4.2.2 ABAQUS/Explicit output variable identifiers
References
Overview
Except for the information in the status file, results can be obtained from ABAQUS/Explicit only by postprocessing.
The tables in this section list all of the output variables that are available in ABAQUS/Explicit. These output variables can be requested for output to the results (.fil) file (see Output to the data and results files, Section 4.1.2) or as either field- or history-type output to the output database (.odb) file (see Output to the output database, Section 4.1.3). When the output variables are requested for output to the results file, ABAQUS/Explicit will first output these variables to the selected results (.sel) file and will then convert the selected results file to the results file after the analysis completes.
Notation used in the output variable descriptions
The words .fil, .odb Field, and .odb History following the variable's description indicate the availability of the output variable. .fil refers to output to the results file. The output variable can be written to the respective file if the word "yes" appears after the category name; "no" means that the variable is not available to that file.
Direction definitions
The direction definitions depend on the variable type.
Direction definitions for element variables
For components of stress, strain, and similar material variables, 1, 2, and 3 refer to the directions in an orthogonal coordinate system. These are global directions for solid elements, surface directions for shell and membrane elements, and axial and transverse directions for beam elements. However, if a local orientation (Orientations, Section 2.2.5) is associated with the elements for which output is being requested, 1, 2, and 3 are local directions.
Direction definitions for nodal variables
For nodal variables, 1, 2, and 3 refer to the global directions (1=X, 2=Y, 3=Z except for axisymmetric elements, in which case 1=R, 2=Z). Even if a local coordinate system has been defined at a node (Transformed coordinate systems, Section 2.1.5), the data in the results file and the selected results file are still output in the global directions.
If nodal field output is requested for a node that has a local coordinate system defined, a quaternion representing the rotation from the global directions is written to the output database. ABAQUS/CAE automatically uses this quaternion to transform the nodal results into the local directions. Nodal history data written to the output database are always stored in the global directions.
Direction definitions for integrated variables
For components of total force, total moment, and similar variables obtained through integration over a surface, the directions 1, 2, and 3 refer to directions in an orthogonal coordinate system. A fixed global coordinate system is used if the surface is specified directly for the integrated output request. If the surface is identified by an integrated output section definition (see Integrated output section definition, Section 2.5.1) that is associated with the integrated output request, a local coordinate system in the initial configuration can be specified and can translate or rotate with the deformation.
Principal value output
Output of the principal values can be requested for stresses, logarithmic strains, and nominal strains. Either all principal values or the minimum, intermediate, or maximum values can be obtained. All principal values of tensor ABC are obtained with the request ABCP, and the minimum, intermediate, and maximum principal values are obtained with the requests ABCP1, ABCP2, and ABCP3, respectively. For three-dimensional, plane strain, and axisymmetric elements all three principal values are obtained. For plane stress, membrane, and shell elements only the in-plane principal values are obtained for history-type output, and the out-of-plane principal value cannot be requested. For field-type output, all three principal values are obtained through ABAQUS/CAE. Principal values cannot be obtained for beam and truss elements, and principal values of plastic strains cannot be requested.
If a principal value or an invariant is requested for field-type output, the output request is replaced with an output request for the components of the corresponding tensor. ABAQUS/CAE calculates all principal values and invariants from these components. If a principal value is desired as history-type output, it must be requested explicitly since ABAQUS/CAE does no calculations on history data.
Tensor output
Tensor variables that are written to the output database as field-type output are written as components in either the default directions defined by the convention given in Orientations, Section 2.2.5 (global directions for solid elements, surface directions for shell and membrane elements, and axial and transverse directions for beam elements), or the user-defined local system. ABAQUS/CAE calculates all principal values and invariants from these components. See Writing field output data, Section 8.6.4 of the ABAQUS Scripting User's Manual, for a description of the different types of tensor variables.
The components for tensor variables are written to the output database in single precision. Therefore, a small amount of precision roundoff error may occur when calculating the variables' principal values. Such roundoff error may be observed, for example, when analytically zero values are calculated as relatively small yet nonzero values.
Requesting output of components
Individual components of variables can be requested as history-type output in the output database for X–Y plotting in ABAQUS/CAE. Individual component requests are not available for field-type output. If a particular component is desired for contouring in ABAQUS/CAE, request field output of the generic variable (e.g., S for stress). Output for individual components of this field output can be requested within the Visualization module of ABAQUS/CAE.
Element integration point variables
You can request element integration point variable output to the results or output database file (see
Element output” in “Output to the data and results files, Section 4.1.2, and
Element output” in “Output to the output database, Section 4.1.3).
SAll stress components.
.fil: yes .odb Field: yes .odb History: yes
MISESMAXMaximum Mises stress among all of the section points. For a shell element it represents the maximum Mises value among all the section points in the layer, for a beam element it is the maximum Mises stress among all the section points in the cross-section, and for a solid element it represents the Mises stress at the integration points.
.fil: no .odb Field: yes .odb History: no
Sij-component of stress (
).
.fil: no .odb Field: no .odb History: yes SPAll principal stress components.
.fil: yes .odb Field: yes .odb History: yes
SPnMinimum, intermediate, and maximum principal stress components (
SP1 SP2 SP3).
.fil: no .odb Field: no .odb History: yes EAll infinitesimal strain components for geometrically linear analysis.
.fil: yes .odb Field: yes .odb History: yes
Eij-component of infinitesimal strain (
).
.fil: no .odb Field: no .odb History: yes LEAll logarithmic strain components.
.fil: yes .odb Field: yes .odb History: yes
LEij-component of logarithmic strain (
).
.fil: no .odb Field: no .odb History: yes LEPAll principal logarithmic strain components.
.fil: yes .odb Field: yes .odb History: yes
LEPnMinimum, intermediate, and maximum principal logarithmic strain components (
LEP1 LEP2 LEP3).
.fil: no .odb Field: no .odb History: yes ERAll logarithmic strain rate components.
.fil: yes .odb Field: yes .odb History: yes
ERij-component of logarithmic strain rate(
).
.fil: no .odb Field: no .odb History: yes ERPAll principal logarithmic strain rate components.
.fil: yes .odb Field: yes .odb History: yes
ERPnMinimum, intermediate, and maximum principal strain rate components (
ERP1 ERP2 ERP3).
.fil: no .odb Field: no .odb History: yes NEAll nominal strain components.
.fil: yes .odb Field: yes .odb History: yes
NEij-component of nominal strain (
).
.fil: no .odb Field: no .odb History: yes NEPAll principal nominal strain components.
.fil: yes .odb Field: yes .odb History: yes
NEPnMinimum, intermediate, and maximum principal nominal strain components (
NEP1 NEP2 NEP3).
.fil: no .odb Field: no .odb History: yes PEAll plastic strain components.
.fil: yes .odb Field: yes .odb History: yes
PEij-component of plastic strain (
).
.fil: no .odb Field: no .odb History: yes PEPAll principal plastic strains.
.fil: no .odb Field: yes .odb History: yes
PEPnMinimum, intermediate, and maximum principal plastic strains.
.fil: no .odb Field: no .odb History: yes
ERVVolumetric strain rate.
.fil: yes .odb Field: yes .odb History: yes
MISESMises equivalent stress, defined as
, where
is the deviatoric stress tensor, defined as
, where
is the stress and
is the equivalent pressure stress.
.fil: yes .odb Field: yes .odb History: yes PRESSEquivalent pressure stress,
.
.fil: yes .odb Field: yes .odb History: yes TRIAXStress triaxiality,
.
.fil: no .odb Field: no .odb History: yes ALPHAAll kinematic hardening shift tensor components.
.fil: yes .odb Field: yes .odb History: yes
ALPHAij-component of the shift tensor (
).
.fil: no .odb Field: no .odb History: yes ALPHAPAll principal values of the shift tensor.
.fil: yes .odb Field: yes .odb History: yes
ALPHAPnMinimum, intermediate, and maximum principal values of the shift tensor (
ALPHA1 ALPHA2 ALPHA3).
.fil: no .odb Field: no .odb History: yes PEEQEquivalent plastic strain.
For porous metal plasticity PEEQ is the equivalent plastic strain in the matrix material defined as .
For cap plasticity PEEQ gives (the cap position).
For crushable foam plasticity with volumetric hardening PEEQ gives the volumetric compacting plastic strain defined as .
For crushable foam plasticity with isotropic hardening
PEEQ gives the equivalent plastic strain defined as
, where
is the uniaxial compression yield stress.
.fil: yes .odb Field: yes .odb History: yes PEEQMAXMaximum equivalent plastic strain, PEEQ, among all of the section points. For a shell element it represents the maximum PEEQ value among all the section points in the layer, for a beam element it is the maximum PEEQ among all the section points in the cross-section, and for a solid element it represents the PEEQ at the integration points.
.fil: no .odb Field: yes .odb History: no
Additional element stresses
TSHRAll transverse shear stress components for shell elements S4R and S3R.
.fil: yes .odb Field: yes .odb History: yes
TSHR13-component of transverse shear stress.
.fil: no .odb Field: no .odb History: yes TSHR23-component of transverse shear stress.
.fil: no .odb Field: no .odb History: yes ENERAll energy densities.
.fil: yes .odb Field: yes .odb History: yes
SENERElastic strain energy density, per unit volume.
.fil: no .odb Field: no .odb History: yes
PENEREnergy dissipated by rate-independent and rate-dependent plasticity, per unit volume.
.fil: no .odb Field: no .odb History: yes
CENEREnergy dissipated by viscoelasticity, per unit volume (not supported for hyperelastic and hyperfoam material models).
.fil: no .odb Field: no .odb History: yes
VENEREnergy dissipated by viscous effects, per unit volume.
.fil: no .odb Field: no .odb History: yes
DMENEREnergy dissipated by damage, per unit volume.
.fil: no .odb Field: no .odb History: yes
State and field variables
SDVSolution-dependent state variables.
.fil: yes .odb Field: yes .odb History: yes
SDVnSolution-dependent state variable n.
.fil: no .odb Field: no .odb History: yes
TEMPTemperature.
.fil: yes .odb Field: yes .odb History: yes
DENSITYMaterial density.
.fil: no .odb Field: yes .odb History: yes
FVField variables.
.fil: no .odb Field: yes .odb History: yes
FVnField variable n.
.fil: no .odb Field: no .odb History: yes
Composite failure measures
CFAILUREAll failure measure components.
.fil: no .odb Field: yes .odb History: no
MSTRSMaximum stress theory failure measure.
.fil: no .odb Field: no .odb History: no
TSAIHTsai-Hill theory failure measure.
.fil: no .odb Field: no .odb History: no
TSAIWTsai-Wu theory failure measure.
.fil: no .odb Field: no .odb History: no
AZZITAzzi-Tsai-Hill theory failure measure.
.fil: no .odb Field: no .odb History: no
MSTRNMaximum strain theory failure measure.
.fil: no .odb Field: no .odb History: no
Additional plasticity quantities
PEQCAll equivalent plastic strains, when the model has more than one yield/failure surface.
.fil: yes .odb Field: yes .odb History: yes
PEQCnnth equivalent plastic strain (
).
For cap plasticity: PEQC provides equivalent plastic strains for all three possible yield/failure surfaces (Drucker-Prager failure surface - PEQC1, cap surface - PEQC2, and transition surface - PEQC3) and the total volumetric plastic strain (PEQC4). All identifiers also provide a yes/no flag (1/0 in the output database), telling whether the yield surface is currently active or not (AC YIELD: “actively yielding”).
When
PEQC is requested as output to the output database, the active yield flags for each component are named AC YIELD1, AC YIELD2, etc.
.fil: no .odb Field: no .odb History: yes
Porous metal plasticity quantities
VVFVoid volume fraction (porous metal plasticity).
.fil: yes .odb Field: yes .odb History: yes
VVFGVoid volume fraction due to growth (porous metal plasticity).
.fil: yes .odb Field: yes .odb History: yes
VVFNVoid volume fraction due to nucleation (porous metal plasticity).
.fil: yes .odb Field: yes .odb History: yes
Concrete damaged plasticity
DAMAGECCompressive damage variable,
.
.fil: no .odb Field: yes .odb History: yes DAMAGETTensile damage variable,
.
.fil: no .odb Field: yes .odb History: yes SDEGScalar stiffness degradation variable, d.
.fil: no .odb Field: yes .odb History: yes
PEEQEquivalent plastic strain in uniaxial compression, which is defined as
.
.fil: no .odb Field: yes .odb History: yes PEEQTEquivalent plastic strain in uniaxial tension, which is defined as
.
.fil: no .odb Field: yes .odb History: yes
Cracking model quantities
CKEAll cracking strain components.
.fil: yes .odb Field: no .odb History: no
CKEij-component of cracking strain.
.fil: no .odb Field: no .odb History: no CKLEAll cracking strain components in local crack axes.
.fil: yes .odb Field: no .odb History: no
CKLEij-component of cracking strain in local crack axes.
.fil: no .odb Field: no .odb History: no CKEMAGCracking strain magnitude, defined as
.
.fil: yes .odb Field: no .odb History: no CKLSAll stress components in local crack axes.
.fil: yes .odb Field: no .odb History: no
CKLSij-component of stress in local crack axes.
.fil: no .odb Field: no .odb History: no CRACKCrack orientations.
.fil: yes .odb Field: no .odb History: no
CKSTATCrack status of each crack. CKSTAT can have the following values for each crack: 0.0=uncracked, 1.0=closed crack, 2.0=actively cracking, 3.0=crack closing/reopening.
.fil: yes .odb Field: no .odb History: no
Failure with progressive damage
DMICRTAll active components of the damage initiation criteria.
.fil: no .odb Field: yes .odb History: yes
DUCTCRTDuctile damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
JCCRTJohnson-Cook damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
SHRCRTShear damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
FLDCRTForming limit diagram (FLD) damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
FLSDCRTForming limit stress diagram (FLSD) damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
MSFLDCRTMüschenborn-Sonne forming limit stress diagram (MSFLD) damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
MKCRTMarciniak-Kuczynski (M-K) damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
SDEGOverall scalar stiffness degradation.
.fil: no .odb Field: yes .odb History: yes
ERPRATIORatio of principal strain rates,
, used for the MSFLD damage initiation criterion.
.fil: no .odb Field: yes .odb History: yes SHRRATIOShear stress ratio,
, used for the shear damage initiation criterion.
.fil: no .odb Field: yes .odb History: yes PALPHDistension,
, of the
porous material.
.fil: no .odb Field: yes .odb History: yes PALPHMINMinimum value,
, of the distension attained during plastic compaction of the
porous material.
.fil: no .odb Field: yes .odb History: yes RBFORForce in rebar.
.fil: yes .odb Field: no .odb History: no
RBANGAngle, in degrees, between rebar and the user-specified isoparametric direction. Available only for shell and membrane elements.
.fil: yes .odb Field: no .odb History: no
RBROTChange in angle, in degrees, between rebar and the user-specified isoparametric direction. Available only for shell and membrane elements.
.fil: yes .odb Field: no .odb History: no
Coupled thermal-stress elements
HFLCurrent magnitude and components of the heat flux vector.
.fil: yes .odb Field: yes .odb History: yes
HFLMCurrent magnitude of the heat flux vector.
.fil: no .odb Field: no .odb History: yes
HFLnComponent
n of the heat flux vector (
).
.fil: no .odb Field: no .odb History: yes MAXSCRTMaximum nominal stress damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
MAXECRTMaximum nominal strain damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
QUADSCRTQuadratic nominal stress damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
QUADECRTQuadratic nominal strain damage initiation criterion.
.fil: no .odb Field: no .odb History: yes
DMICRTAll active components of the damage initiation criteria.
.fil: no .odb Field: yes .odb History: yes
SDEGOverall scalar stiffness degradation.
.fil: no .odb Field: yes .odb History: yes
STATUSStatus of the element (the status of an element is 1.0 if the element is active, 0.0 if the element is not).
.fil: no .odb Field: yes .odb History: yes
Element section variables
You can request element section variable output to the results or output database file (see
Element output” in “Output to the data and results files, Section 4.1.2, and
Element output” in “Output to the output database, Section 4.1.3). These variables are available only for beam and shell elements with the exception of
STH, which is also available for membrane elements. They are defined for particular elements in the element descriptions in
Part VI, Elements.”
STHSection thickness (shell and membrane elements only).
.fil: yes .odb Field: yes .odb History: yes
SFAll section resultant components, both translational (forces) and rotational (moments).
.fil: yes .odb Field: yes .odb History: yes
SFnSection force component
n,
for shells;
for beams.
.fil: no .odb Field: no .odb History: yes SMnSection moment component
n,
.
.fil: no .odb Field: no .odb History: yes SEAll section nominal strains, both translational and rotational (e.g., midplane strain and curvature in shells).
.fil: yes .odb Field: yes .odb History: yes
SEnSection nominal strain component
n,
for shells;
for beams.
.fil: no .odb Field: no .odb History: yes SKnSection curvature change or twist
n,
.
.fil: no .odb Field: no .odb History: yes SSAVGAll average membrane and transverse shear stress components (shell elements only).
.fil: yes .odb Field: yes .odb History: no
SSAVGnAverage membrane or transverse shear stress component
n,
(shell elements only).
.fil: no .odb Field: no .odb History: no Whole element variables
You can request whole element variable output to the results or output database file (see
Element output” in “Output to the data and results files, Section 4.1.2, and
Element output” in “Output to the output database, Section 4.1.3).
ELENAll energy magnitudes in the element.
.fil: yes .odb Field: yes .odb History: yes
ELSETotal elastic strain energy in the element (includes energy in transverse shear deformation in shells).
.fil: no .odb Field: no .odb History: yes
ELCDTotal energy dissipated in the element by viscoelastic deformation. (Not supported for hyperelastic and hyperfoam material models.)
.fil: no .odb Field: no .odb History: yes
ELPDTotal energy dissipated in the element by rate-independent and rate-dependent plastic deformation.
.fil: no .odb Field: no .odb History: yes
ELVDTotal energy dissipated in the element by viscous effects. This includes bulk viscosity and material damping.
.fil: no .odb Field: no .odb History: yes
ELASETotal “artificial” strain energy in the element. This includes hourglass energy and drilling stiffness energy in shells.
.fil: no .odb Field: no .odb History: yes
ELIHEInternal heat energy in the element.
.fil: no .odb Field: no .odb History: yes
ELDMDTotal energy dissipated in the element by damage.
.fil: no .odb Field: no .odb History: yes
ELDCTotal energy dissipated in the element by distortion control.
.fil: no .odb Field: no .odb History: yes
ELEDENAll element energy density components.
.fil: no .odb Field: yes .odb History: no
ESEDENTotal elastic strain energy density in the element.
.fil: no .odb Field: no .odb History: no
EPDDENTotal energy dissipated per unit volume in the element by rate-independent and rate-dependent plastic deformation.
.fil: no .odb Field: no .odb History: no
ECDDENTotal energy dissipated per unit volume in the element by viscoelasticity.
.fil: no .odb Field: no .odb History: no
EVDDENTotal energy dissipated per unit volume in the element by viscous effects.
.fil: no .odb Field: no .odb History: no
EASEDENTotal “artificial” strain energy density in the element (energy associated with constraints used to remove singular modes, such as hourglass control).
.fil: no .odb Field: no .odb History: no
EIHEDENInternal heat energy density in the element.
.fil: no .odb Field: no .odb History: no
EDMDDENTotal energy dissipated per unit volume in the element by damage.
.fil: no .odb Field: no .odb History: no
EDCDENTotal energy dissipated per unit volume in the element by distortion control.
.fil: no .odb Field: no .odb History: no
EDTElement stable time increment.
.fil: yes .odb Field: yes .odb History: yes
EMSFElement mass scaling factor.
.fil: yes .odb Field: yes .odb History: yes
STATUSStatus of element (material failure with progressive damage, shear failure model, tensile failure model, porous failure criterion, brittle failure model, Johnson-Cook plasticity model, and
VUMAT). The status of an element is 1.0 if the element is active, 0.0 if the element is not.
.fil: yes .odb Field: yes .odb History: yes EVOLCurrent element volume. (Only available for continuum and structural elements not using general beam or shell section definitions.)
.fil: no .odb Field: yes .odb History: no
CTFAll components of connector total forces and moments.
.fil: yes .odb Field: no .odb History: yes
CTFnConnector total force component
n (
).
.fil: no .odb Field: no .odb History: yes CTMnConnector total moment component
n (
).
.fil: no .odb Field: no .odb History: yes CEFAll components of connector elastic forces and moments.
.fil: yes .odb Field: no .odb History: yes
CEFnConnector elastic force component
n (
).
.fil: no .odb Field: no .odb History: yes CEMnConnector elastic moment component
n (
).
.fil: no .odb Field: no .odb History: yes CUEElastic displacements and rotations in all directions.
.fil: yes .odb Field: no .odb History: yes
CUEnElastic displacement in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CUREnElastic rotation in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CUPPlastic relative displacements and rotations in all directions.
.fil: yes .odb Field: no .odb History: yes
CUPnPlastic relative displacement in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CURPnPlastic relative rotation in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CUPEQEquivalent plastic relative displacements and rotations in all directions.
.fil: yes .odb Field: no .odb History: yes
CUPEQnEquivalent plastic relative displacement in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CURPEQnEquivalent plastic relative rotation in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CUPEQCEquivalent plastic relative motion for a coupled plasticity definition.
.fil: no .odb Field: no .odb History: yes
CALPHAFAll components of connector kinematic hardening shift forces and moments.
.fil: yes .odb Field: no .odb History: yes
CALPHAFnConnector kinematic hardening shift force component
n (
).
.fil: no .odb Field: no .odb History: yes CALPHAMnConnector kinematic hardening shift moment component
n (
).
.fil: no .odb Field: no .odb History: yes CVFAll components of connector viscous forces and moments.
.fil: yes .odb Field: no .odb History: yes
CVFnConnector viscous force component
n (
).
.fil: no .odb Field: no .odb History: yes CVMnConnector viscous moment component
n (
).
.fil: no .odb Field: no .odb History: yes CSFAll components of connector friction forces and moments.
.fil: yes .odb Field: no .odb History: yes
CSFnConnector friction force component
n (
).
.fil: no .odb Field: no .odb History: yes CSMnConnector friction moment component
n (
).
.fil: no .odb Field: no .odb History: yes CSFCConnector friction force in the instantaneous slip direction. Available only if friction is defined in the slip direction.
.fil: no .odb Field: no .odb History: yes
CNFAll components of connector friction-generating contact forces and moments.
.fil: yes .odb Field: no .odb History: yes
CNFnConnector friction-generating contact force component n (n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CNMnConnector friction-generating contact moment component n (n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CNFCConnector friction-generating contact force in the instantaneous slip direction. Available only if friction is defined in the slip direction.
.fil: no .odb Field: no .odb History: yes
CDMGAll components of the overall damage variable.
.fil: yes .odb Field: no .odb History: yes
CDMGnOverall damage variable component
n (
).
.fil: no .odb Field: no .odb History: yes CDMGRnOverall damage variable component
n (
).
.fil: no .odb Field: no .odb History: yes CDIFComponents of connector force-based damage initiation criterion in all directions.
.fil: yes .odb Field: no .odb History: yes
CDIFnConnector force-based damage initiation criterion in the
n-translation direction (
).
.fil: no .odb Field: no .odb History: yes CDIFRnConnector force-based damage initiation criterion in the
n-rotation direction (
).
.fil: no .odb Field: no .odb History: yes CDIFCConnector force-based damage initiation criterion in the instantaneous slip direction.
.fil: no .odb Field: no .odb History: yes
CDIMComponents of connector motion-based damage initiation criterion in all directions.
.fil: yes .odb Field: no .odb History: yes
CDIMnConnector motion-based damage initiation criterion in the
n-translation direction (
).
.fil: no .odb Field: no .odb History: yes CDIMRnConnector motion-based damage initiation criterion in the
n-rotation direction (
).
.fil: no .odb Field: no .odb History: yes CDIMCConnector motion-based damage initiation criterion in the instantaneous slip direction.
.fil: no .odb Field: no .odb History: yes
CDIPComponents of connector plastic motion-based damage initiation criterion in all directions.
.fil: yes .odb Field: no .odb History: yes
CDIPnConnector plastic motion-based damage initiation criterion in the
n-translation direction (
).
.fil: no .odb Field: no .odb History: yes CDIPRnConnector plastic motion-based damage initiation criterion in the
n-rotation direction (
).
.fil: no .odb Field: no .odb History: yes CDIPCConnector plastic motion-based damage initiation criterion in the instantaneous slip direction.
.fil: no .odb Field: no .odb History: yes
CSLSTAll flags for connector stop and connector lock status.
.fil: yes .odb Field: no .odb History: yes
CSLSTiFlag for connector stop and connector lock status in the
i-direction (
).
.fil: no .odb Field: no .odb History: yes CASUComponents of accumulated slip in all directions.
.fil: yes .odb Field: no .odb History: yes
CASUnConnector accumulated slip in the n-direction (n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CASURnConnector angular accumulated slip in the n-direction (n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CASUCConnector accumulated slip in the instantaneous slip direction. Available only if friction is defined in the slip direction.
.fil: no .odb Field: no .odb History: yes
CIVCConnector instantaneous velocity in the slip direction. Available only if friction is defined in the slip direction.
.fil: yes .odb Field: no .odb History: yes
CRFAll components of connector reaction forces and moments.
.fil: yes .odb Field: no .odb History: yes
CRFnConnector reaction force component
n (
).
.fil: no .odb Field: no .odb History: yes CRMnConnector reaction moment component
n (
).
.fil: no .odb Field: no .odb History: yes CCFAll components of connector concentrated forces and moments.
.fil: yes .odb Field: no .odb History: yes
CCFnConnector concentrated force component
n (
).
.fil: no .odb Field: no .odb History: yes CCMnConnector concentrated moment component
n (
).
.fil: no .odb Field: no .odb History: yes CPRelative positions in all directions.
.fil: yes .odb Field: no .odb History: yes
CPnRelative position in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CPRnRelative angular position in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CURelative displacements and rotations in all directions.
.fil: yes .odb Field: no .odb History: yes
CUnRelative displacement in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CURnRelative rotation in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CCUConstitutive displacements and rotations in all directions.
.fil: yes .odb Field: no .odb History: yes
CCUnConstitutive displacement in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CCURnConstitutive rotation in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CVRelative velocities in all directions.
.fil: yes .odb Field: no .odb History: yes
CVnRelative velocity in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CVRnRelative angular velocity in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CARelative accelerations in all directions.
.fil: yes .odb Field: no .odb History: yes
CAnRelative acceleration in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CARnRelative angular acceleration in the
n-direction (
).
.fil: no .odb Field: no .odb History: yes CFAILSTAll flags for connector failure status.
.fil: yes .odb Field: no .odb History: yes
CFAILSTiFlag for connector failure status in the
i-direction (
).
.fil: no .odb Field: no .odb History: yes Nodal variables
You can request nodal variable output to the results or output database file (see
Node output” in “Output to the data and results files, Section 4.1.2, and
Node output” in “Output to the output database, Section 4.1.3).
COORDCoordinates of the node. These are the current coordinates if the large-displacement formulation is being used.
.fil: yes .odb Field: yes .odb History: yes
COORnCoordinate
n (
).
.fil: no .odb Field: no .odb History: yes UDisplacement components.
Results file and field-type output: both translation and rotation.
History-type output: translation only. Rotation results should be requested by components.
.fil: yes .odb Field: yes .odb History: yes UTTranslational displacement components.
.fil: no .odb Field: yes .odb History: yes
URRotational displacement components.
.fil: no .odb Field: yes .odb History: yes
Un displacement component (
).
.fil: no .odb Field: no .odb History: yes URn rotation component (
).
.fil: no .odb Field: no .odb History: yes VVelocity components (both translation and rotation).
Results file and field-type output: both translation and rotation.
History-type output: translation only. Rotation results should be requested by components.
.fil: yes .odb Field: yes .odb History: yes VTTranslational velocity components.
.fil: no .odb Field: yes .odb History: yes
VRRotational velocity components.
.fil: no .odb Field: yes .odb History: yes
Vn velocity component (
).
.fil: no .odb Field: no .odb History: yes VRn rotational velocity component (
).
.fil: no .odb Field: no .odb History: yes AAcceleration components (both translation and rotation).
Results file and field-type output: both translation and rotation.
History-type output: translation only. Rotation results should be requested by components.
.fil: yes .odb Field: yes .odb History: yes ATTranslational acceleration components.
.fil: no .odb Field: yes .odb History: yes
ARRotational acceleration components.
.fil: no .odb Field: yes .odb History: yes
An acceleration component (
).
.fil: no .odb Field: no .odb History: yes ARn rotational acceleration component (
).
.fil: no .odb Field: no .odb History: yes PORAcoustic pressure at a node.
.fil: yes .odb Field: yes .odb History: yes
PABSAcoustic absolute pressure at a node.
.fil: yes .odb Field: yes .odb History: yes
NTAll temperature values at a node. Available only for coupled thermal-stress analysis.
.fil: yes .odb Field: yes .odb History: yes
NTnTemperature degree of freedom
n at a node (
). Available only for coupled thermal-stress analysis.
.fil: no .odb Field: no .odb History: yes RFReaction force and moment components.
Results file and field-type output: both translation and rotation.
History-type output: translation only. Rotation results should be requested by components.
.fil: yes .odb Field: yes .odb History: yes RTReaction force components.
.fil: no .odb Field: yes .odb History: yes
RMReaction moment components.
.fil: no .odb Field: yes .odb History: yes
RFnReaction force component
n (
) (conjugate to prescribed displacement
).
.fil: no .odb Field: no .odb History: yes RFLAll reaction flux values. Available only for coupled thermal-stress analysis.
.fil: yes .odb Field: yes .odb History: yes
RFLnReaction flux value
n at a node (
). Available only for coupled thermal-stress analysis.
.fil: no .odb Field: yes .odb History: yes RMnReaction moment component
n (
) (conjugate to prescribed rotation
).
.fil: no .odb Field: no .odb History: yes PCAVFluid cavity gauge pressure.
.fil: yes .odb Field: yes .odb History: yes
CVOLFluid cavity volume.
.fil: yes .odb Field: yes .odb History: yes
CTEMPFluid cavity temperature for an ideal gas model used under adiabatic conditions.
.fil: no .odb Field: no .odb History: yes
CSAREAFluid cavity surface area.
.fil: no .odb Field: no .odb History: yes
CMASSMass of the fluid contained in a fluid cavity.
.fil: no .odb Field: no .odb History: yes
APCAVAverage gauge pressures for multiple fluid cavities.
.fil: no .odb Field: no .odb History: yes
TCVOLTotal volume of multiple fluid cavities.
.fil: no .odb Field: no .odb History: yes
ACTEMPAverage fluid cavity temperature for an ideal gas model used under adiabatic conditions for multiple fluid cavities.
.fil: no .odb Field: no .odb History: yes
TCSAREATotal surface area of multiple fluid cavities.
.fil: no .odb Field: no .odb History: yes
TCMASSTotal mass of the fluid contained in the multiple fluid cavities.
.fil: no .odb Field: no .odb History: yes
CMFMolecular mass fraction of fluid species contained in a fluid cavity.
.fil: no .odb Field: no .odb History: yes
CMFLMass flow rate out of a fluid cavity.
.fil: no .odb Field: no .odb History: yes
CMFLTAccumulated mass flow out of a fluid cavity.
.fil: no .odb Field: no .odb History: yes
CEFLHeat energy flow rate out of a fluid cavity.
.fil: no .odb Field: no .odb History: yes
CEFLTAccumulated heat energy flow out of a fluid cavity.
.fil: no .odb Field: no .odb History: yes
MINFLInflator mass flow rate into a fluid cavity.
.fil: no .odb Field: no .odb History: yes
MINFLTAccumulated inflator mass flow into a fluid cavity.
.fil: no .odb Field: no .odb History: yes
TINFLInflator temperature.
.fil: no .odb Field: no .odb History: yes
Surface variables
You can request surface variable output to the output database file (see
Surface output” in “Output to the output database, Section 4.1.3); additional information on these variables is provided in
Defining general contact interactions, Section 29.3.1;
Defining contact pairs in ABAQUS/Explicit, Section 29.4.1; and
Thermal contact properties, Section 30.2.1.
Mechanical analysis–nodal quantities
CFORCEContact normal force (CNORMF) and frictional shear force (CSHEARF).
.fil: no .odb Field: yes .odb History: no
CSTRESSContact pressure (CPRESS) and frictional shear stress (CSHEAR).
.fil: no .odb Field: yes .odb History: no
FSLIPLength of contact slip path at slave nodes during contact (
FSLIPEQ) and in some cases (see
Defining contact pairs in ABAQUS/Explicit, Section 29.4.1) components of net contact slip in local tangent directions (
FSLIP1 and
FSLIP2). These variables remain constant while a slave node is not in contact.
.fil: no .odb Field: yes .odb History: no FSLIPRMagnitude of contact slip rate at slave nodes during contact (
FSLIPR) and in some cases (see
Defining contact pairs in ABAQUS/Explicit, Section 29.4.1) components of contact slip rate in local tangent directions (
FSLIPR1 and
FSLIPR2). These variables are set to zero while a slave node is not in contact.
.fil: no .odb Field: yes .odb History: no BONDSTATSpot weld bond status.
.fil: no .odb Field: no .odb History: yes
BONDLOADSpot weld bond load.
.fil: no .odb Field: no .odb History: yes
Mechanical analysis–whole surface quantities
CFNTotal force due to contact pressure (CFNM, CFNn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CFSTotal force due to frictional stress (CFSM, CFSn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CFTTotal force due to contact pressure and frictional stress (CFTM, CFTn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CMNTotal moment about the origin due to contact pressure (CMNM, CMNn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CMSTotal moment about the origin due to frictional stress (CMSM, CMSn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CMTTotal moment about the origin due to contact pressure and frictional stress (CMTM, CMTn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
CAREATotal area in contact.
.fil: no .odb Field: no .odb History: yes
XNCenter of the total force due to contact pressure (XNn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
XSCenter of the total force due to frictional stress (XSn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
XTCenter of the total force due to contact pressure and frictional stress (XTn, n = 1, 2, 3).
.fil: no .odb Field: no .odb History: yes
Fully coupled temperature-displacement analysis
HFLHeat flux per unit area leaving the surface.
.fil: no .odb Field: yes .odb History: no
HFLAHFL multiplied by the area.
.fil: no .odb Field: yes .odb History: no
HTLTime integrated HFL.
.fil: no .odb Field: yes .odb History: no
HTLAHTL multiplied by the area.
.fil: no .odb Field: yes .odb History: no
SFDRHeat flux per unit area due to frictional dissipation.
.fil: no .odb Field: yes .odb History: no
SFDRASFDR multiplied by the area.
.fil: no .odb Field: yes .odb History: no
SFDRTTime integrated SFDR.
.fil: no .odb Field: yes .odb History: no
SFDRTASFDRT multiplied by the area.
.fil: no .odb Field: yes .odb History: no
Integrated variables
You can request integrated variable output to the output database (see
Integrated output in ABAQUS/Explicit” in “Output to the output database, Section 4.1.3). The output quantity is computed by integration over a surface that is specified either directly in the integrated output request or by associating an integrated output section definition (see
Integrated output section definition, Section 2.5.1) with the integrated output request.
The components of the vector output variables are given with respect to a global coordinate system when no integrated output section definition is associated with the integrated output request. When an integrated output section is associated with the integrated output request and a local coordinate system is defined for the integrated output section, the components are given in the local system. The local system will rotate with the deformation if a reference node with rotation degrees of freedom is associated with the section definition.
SOAREAArea of the surface as projected onto a plane normal to the average surface normal.
.fil: no .odb Field: no .odb History: yes
SOFTotal force transmitted through the surface.
.fil: no .odb Field: no .odb History: yes
SOMTotal moment transmitted through the surface. The moment of the forces transmitted through the surface is taken about the current location of the reference node if one is specified on an integrated output section and is associated with the integrated output request. The moment is taken about the global origin either if no section definition is associated with the integrated output request or if there is no reference node defined in the associated section definition.
.fil: no .odb Field: no .odb History: yes
Total energy output
You can request total energy variable output to the results or output database file (see
Total energy output” in “Output to the data and results files, Section 4.1.2, and
Total energy output” in “Output to the output database, Section 4.1.3). All of these variables are written when total energy output is requested. Energy history totals can be requested to the output database for part of the model as well as the whole model.
ALLAE“Artificial” strain energy associated with constraints used to remove singular modes (such as hourglass control).
.fil: yes .odb Field: no .odb History: yes
ALLCDEnergy dissipated by viscoelasticity. (Not supported for hyperelastic and hyperfoam material models.)
.fil: yes .odb Field: no .odb History: yes
ALLFDTotal energy dissipated through frictional effects. (Available only for the whole model.)
.fil: yes .odb Field: no .odb History: yes
ALLIETotal strain energy. (ALLIE=ALLSE + ALLPD + ALLCD + ALLAE + ALLDMD+ ALLDC+ ALLFC.)
.fil: yes .odb Field: no .odb History: yes
ALLKEKinetic energy.
.fil: yes .odb Field: no .odb History: yes
ALLPDEnergy dissipated by rate-independent and rate-dependent plastic deformation.
.fil: yes .odb Field: no .odb History: yes
ALLSERecoverable strain energy.
.fil: yes .odb Field: no .odb History: yes
ALLVDEnergy dissipated by viscous effects.
.fil: yes .odb Field: no .odb History: yes
ALLWKExternal work. (Available only for the whole model.)
.fil: yes .odb Field: no .odb History: yes
ALLIHEInternal heat energy.
.fil: yes .odb Field: no .odb History: yes
ALLHFExternal heat energy through external fluxes.
.fil: yes .odb Field: no .odb History: yes
ALLDMDEnergy dissipated by damage.
.fil: yes .odb Field: no .odb History: yes
ALLDCEnergy dissipated by distortion control.
.fil: yes .odb Field: no .odb History: yes
ALLFCFluid cavity energy, defined as the negative of the work done by all fluid cavities. (Available only for the whole model).
.fil: no .odb Field: no .odb History: yes
ETOTALEnergy balance defined as: ALLKE + ALLIE + ALLVD + ALLFD + ALLIHE ALLWK ALLHF. (Available only for the whole model.)
.fil: yes .odb Field: no .odb History: yes
Time increment and mass output
The
DT and
DMASS variables are always written when any results file output is requested (see
Output to the ABAQUS/Explicit results file” in “Output to the data and results files, Section 4.1.2). You can request output of the time increment and the steady-state detection variables
SSPEEQ,
SSSPRD,
SSFORC, and
SSTORQ to the output database (see
Time incrementation output in ABAQUS/Explicit” in “Output to the output database, Section 4.1.3).
DTTime increment.
.fil: yes .odb Field: no .odb History: yes
DMASSPercent change in mass of the model due to mass scaling.
.fil: yes .odb Field: no .odb History: yes
SSPEEQSteady-state equivalent plastic strain norms.
.fil: no .odb Field: no .odb History: yes
SSPEEQnSteady-state equivalent plastic strain norm n.
.fil: no .odb Field: no .odb History: yes
SSSPRDSteady-state spread strain norms.
.fil: no .odb Field: no .odb History: yes
SSSPRDnSteady-state spread norm n.
.fil: no .odb Field: no .odb History: yes
SSFORCSteady-state force norms.
.fil: no .odb Field: no .odb History: yes
SSFORCnSteady-state force norm n.
.fil: no .odb Field: no .odb History: yes
SSTORQSteady-state torque norms.
.fil: no .odb Field: no .odb History: yes
SSTORQnSteady-state torque norm n.
.fil: no .odb Field: no .odb History: yes