In a mechanical contact simulation the interaction between contacting bodies is defined by assigning a contact property model to a contact interaction (see Defining contact pairs in ABAQUS/Standard, Section 21.2.1; Contact properties for general contact, Section 21.3.3; and Contact properties for ABAQUS/Explicit contact pairs, Section 21.4.3, for details). Mechanical contact property models:
may include a constitutive model for the contact pressure-overclosure relationship that governs the motion of the surfaces;
may include a damping model that defines forces resisting the relative motions of the contacting surfaces;
may include a friction model that defines the force resisting the relative tangential motion of the surfaces;
may include a constitutive model in which you define the normal and tangential behavior in user subroutine UINTER (ABAQUS/Standard) or VUINTER (ABAQUS/Explicit);
in ABAQUS/Standard may include a constitutive model for the penetration of fluid between two contacting surfaces;
in ABAQUS/Standard may include a constitutive model for the interaction of debonded surfaces; and
in ABAQUS/Explicit may include a constitutive model that simulates the failure of bonds connecting the interacting bodies.
There are different methods for defining the components of a mechanical contact property model.
The default contact pressure-overclosure relationship used by ABAQUS is referred to as the “hard” contact model. It assumes that the surfaces transmit no contact pressure unless the nodes of the slave surface contact the master surface. There is no limit to the magnitude of contact pressure that can be transmitted when the surfaces are in contact. You can define a nondefault pressure-overclosure relationship for a surface interaction. The various nondefault pressure-overclosure relationships available in ABAQUS are discussed in Contact pressure-overclosure relationships, Section 22.1.2.
You can define damping forces to oppose the relative motion between the interacting surfaces.
In ABAQUS/Standard the specified contact damping affects the motion in the normal direction only, whereas in ABAQUS/Explicit contact damping can affect both the relative tangential motion and the motion normal to the surfaces.
The details of the contact damping model are discussed in Contact damping, Section 22.1.3.
By default, ABAQUS assumes that contact between surfaces is frictionless. You can include a friction model as part of a surface interaction definition.
Details of the various friction models available in ABAQUS are discussed in Frictional behavior, Section 22.1.4.
Instead of choosing one or some combination of the various interfacial behavior models that are available in ABAQUS, you can define any special or proprietary interfacial constitutive behavior through user subroutine UINTER in ABAQUS/Standard or VUINTER in ABAQUS/Explicit.
In ABAQUS/Explicit the penalty contact pair algorithm must be used for interacting surfaces whose interfacial behavior is governed by VUINTER.
Details of the definition of a user-defined interfacial constitutive behavior are discussed in User-defined interfacial constitutive behavior, Section 22.1.5.
You can define pressure penetration loads to simulate the penetration of fluid between two contacting surfaces in ABAQUS/Standard. The details of the pressure penetration model are discussed in Pressure penetration loading, Section 22.1.6.
You can allow two initially bonded surfaces to debond in ABAQUS/Standard, as discussed in Crack propagation analysis, Section 7.10.3. The details of the contact interaction model after debonding are discussed in Interaction of debonded surfaces, Section 22.1.7.
In ABAQUS/Explicit you can define breakable bonds that connect the interacting surfaces. The kinematic contact pair algorithm must be used when defining breakable bonds.
The breakable bonds affect both the relative tangential motion and the motion normal to the surfaces. Breakable bonds cannot be used with analytical rigid surfaces. The details of the breakable bond model, known as the spot weld model, are discussed in Breakable bonds, Section 22.1.8.