Difference between revisions of "GraviCase Log"
Line 10: | Line 10: | ||
'''Week 2 (September 9-16, 2017):''' | '''Week 2 (September 9-16, 2017):''' | ||
− | Due to concerns about both the feasibility and safety of our project, we have begun researching into some of the individual parts of our project. We want to make sure that we can come up with a cheap effective way to make and test our project. We see the airbag portion of our idea as the elephant in the room as far as cost is concerned. Additionally, we have begun research into a way to inflate our airbag safely and quickly enough to meet the safety and usefulness goals we have set for our project. While originally we were leaning towards a chemically inflated airbag, through consultation with out TA, we believe a compressed air inflation will be 1 safer, 2 cheaper, and 3 most realistic. We have begun looking into personal airbags which inflate from compressed air and starting to run some of the cost numbers as well as the ability for us to reverse engineer the deployment system for a smaller airbag. We need to begin designing | + | Due to concerns about both the feasibility and safety of our project, we have begun researching into some of the individual parts of our project. We want to make sure that we can come up with a cheap effective way to make and test our project. We see the airbag portion of our idea as the elephant in the room as far as cost is concerned. Additionally, we have begun research into a way to inflate our airbag safely and quickly enough to meet the safety and usefulness goals we have set for our project. While originally we were leaning towards a chemically inflated airbag, through consultation with out TA, we believe a compressed air inflation will be 1 safer, 2 cheaper, and 3 most realistic. We have begun looking into personal airbags which inflate from compressed air and starting to run some of the cost numbers as well as the ability for us to reverse engineer the deployment system for a smaller airbag. We need to begin designing our product, specific concerns we have are the powering mechanism, the airbag shape, the airbag inflating mechanism, preventing premature / unnecessary inflation of the airbag and also the speed at which we can fill the airbag (as it must be able to inflate in the time it takes for the phone to hit the ground. |
We have a few ideas related to this: we have a rudimentary idea of how we want the airbag shaped. However, more research and discussion is necessary for the powering and inflating parts of our project. I have an idea related to a CSE132 lab I did involving peak detection to count "steps" on the arduino platform, and we believe that this may be the most effective way for us to ensure it doesn't inflate prematurely. | We have a few ideas related to this: we have a rudimentary idea of how we want the airbag shaped. However, more research and discussion is necessary for the powering and inflating parts of our project. I have an idea related to a CSE132 lab I did involving peak detection to count "steps" on the arduino platform, and we believe that this may be the most effective way for us to ensure it doesn't inflate prematurely. | ||
Revision as of 19:37, 12 September 2017
Weekly Log for GraviCase Project
By Matt Rocco and Michael Morgan
Week 1 (September 1-8, 2017):
"Decided" on project, started to gameplan objectives and obstacles of project, began to think of how to accomplish goals and design / build our project. Ironing out details on what skillsets we will have to pick up / refresh to accomplish our design. Created wiki and weekly log.
Week 2 (September 9-16, 2017):
Due to concerns about both the feasibility and safety of our project, we have begun researching into some of the individual parts of our project. We want to make sure that we can come up with a cheap effective way to make and test our project. We see the airbag portion of our idea as the elephant in the room as far as cost is concerned. Additionally, we have begun research into a way to inflate our airbag safely and quickly enough to meet the safety and usefulness goals we have set for our project. While originally we were leaning towards a chemically inflated airbag, through consultation with out TA, we believe a compressed air inflation will be 1 safer, 2 cheaper, and 3 most realistic. We have begun looking into personal airbags which inflate from compressed air and starting to run some of the cost numbers as well as the ability for us to reverse engineer the deployment system for a smaller airbag. We need to begin designing our product, specific concerns we have are the powering mechanism, the airbag shape, the airbag inflating mechanism, preventing premature / unnecessary inflation of the airbag and also the speed at which we can fill the airbag (as it must be able to inflate in the time it takes for the phone to hit the ground. We have a few ideas related to this: we have a rudimentary idea of how we want the airbag shaped. However, more research and discussion is necessary for the powering and inflating parts of our project. I have an idea related to a CSE132 lab I did involving peak detection to count "steps" on the arduino platform, and we believe that this may be the most effective way for us to ensure it doesn't inflate prematurely.