Partition does almost all of the work of quicksort. Further, the classic sequential partition, although wonderful, dominates the span of the quicksort algorithm. If we can parallelize partition, the span can be improved from down to .
For N=16:
|
<- - - - - - - - - - - - - - N - - - - - - - - - - - - - ->
|
^
|
partition [0, 16)
|
|
|
partition [0, 8)
|
partition [8, 16)
|
lg N
|
partition [0, 4)
|
partition [4, 8)
|
partition [8, 12)
|
partition [12, 16)
|
|
|
partition [0, 2)
|
partition [2, 4)
|
partition [4, 6)
|
partition [6, 8)
|
partition [8, 10)
|
partition [10, 12)
|
partition [12, 14)
|
partition [14, 16)
|
v
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
base
|
(Optional) Parallel Partition Challenge
The partitioning step can also be done in parallel with Scan remarkably similar to how Pack worked.
class: |
ParallelPartitioner.java |
|
methods: |
partitionRange |
package: |
sort.quick.challenge |
source folder: |
student/src/main/java |
method: PivotLocation partitionRange(int[] data, int min, int maxExclusive)
(parallel implementation required)
Testing Your Solution
Correctness
class: |
_ParallelPartitionerTestSuite.java |
|
package: |
sort.quick.challenge |
source folder: |
testing/src/test/java |