Difference between revisions of "MapReduce Mapper Assignment"
(Commenting out seemingly irrelevant information) |
m (Added Collapsible Youtube Video) |
||
Line 229: | Line 229: | ||
==CardMapper== | ==CardMapper== | ||
The specification for this mapper is outlined in the prep video: | The specification for this mapper is outlined in the prep video: | ||
− | + | {{CollapsibleYouTube|MapReduce Tutorial|<youtube>K8VPHHPS3BQ</youtube>}} | |
{{CollapsibleYouTube|Learning MapReduce with Playing Cards|<youtube>bcjSe0xCHbE</youtube>}} | {{CollapsibleYouTube|Learning MapReduce with Playing Cards|<youtube>bcjSe0xCHbE</youtube>}} | ||
Revision as of 19:42, 21 February 2023
Contents
Motivation
In previous semesters the MapReduce exercise has proven to be the most challenging. We will start by building some Mappers on our way to the final boss.
Each of the Mappers built today can be pairs with an Int Summing AccumulatorCombinerReducer:
- a card mapper that matches the spec outlined in the prep video,
- a simple word counting mapper, and
- an analogous k-mer counting mapper.
Note: the k-mer counting mapper will prepare us for (and hopefully lessen the burden of) an exercise later in the semester.
Code To Use
Previous Exercise
Provided
CardMapper Utilities
Deck implements Iterable<Card>
- rank.numericValue() note: returns Optional<Integer>
WordCount Mapper Utilities
K-mer Mapper Utilities
toStringKMer(sequence, offset, kMerLength) |
---|
private static String toStringKMer(byte[] sequence, int offset, int kMerLength) {
return new String(sequence, offset, kMerLength, StandardCharsets.UTF_8);
}
|
Code To Invesitigate
Note: each of the clients print entries. The entries produced by the map methods of the Mappers are instances of DefaultEntry. The entries produced by the StreamFramework are instances of a different implementation of Entry. Their toString() methods might be slightly different, but rest assured they are all Entries.
Card Mapping Clients
CardMapperClient
class: | CardMapperClient.java | CLIENT |
package: | mapreduce.apps.cards.client | |
source folder: | student/src/main/java |
CardMapperClient |
---|
Deck deck = Deck.createFull();
CardMapper mapper = new CardMapper();
List<Map.Entry<Suit, Integer>> keyValuePairs = mapper.map(deck);
keyValuePairs.forEach(kv -> {
System.out.println(kv);
});
|
CardMapperClient Output |
---|
DefaultEntry[SPADES=>10] DefaultEntry[SPADES=>9] DefaultEntry[SPADES=>8] DefaultEntry[SPADES=>7] DefaultEntry[SPADES=>6] DefaultEntry[SPADES=>5] DefaultEntry[SPADES=>4] DefaultEntry[SPADES=>3] DefaultEntry[SPADES=>2] DefaultEntry[HEARTS=>10] DefaultEntry[HEARTS=>9] DefaultEntry[HEARTS=>8] DefaultEntry[HEARTS=>7] DefaultEntry[HEARTS=>6] DefaultEntry[HEARTS=>5] DefaultEntry[HEARTS=>4] DefaultEntry[HEARTS=>3] DefaultEntry[HEARTS=>2] DefaultEntry[DIAMONDS=>10] DefaultEntry[DIAMONDS=>9] DefaultEntry[DIAMONDS=>8] DefaultEntry[DIAMONDS=>7] DefaultEntry[DIAMONDS=>6] DefaultEntry[DIAMONDS=>5] DefaultEntry[DIAMONDS=>4] DefaultEntry[DIAMONDS=>3] DefaultEntry[DIAMONDS=>2] DefaultEntry[CLUBS=>10] DefaultEntry[CLUBS=>9] DefaultEntry[CLUBS=>8] DefaultEntry[CLUBS=>7] DefaultEntry[CLUBS=>6] DefaultEntry[CLUBS=>5] DefaultEntry[CLUBS=>4] DefaultEntry[CLUBS=>3] DefaultEntry[CLUBS=>2] |
CardMapReduceClient
class: | CardMapReduceClient.java | CLIENT |
package: | mapreduce.apps.cards.client | |
source folder: | student/src/main/java |
CardMapReduceClient |
---|
Deck[] decks = {
Deck.createFull(),
Deck.createFull(),
Deck.createFull(),
Deck.createFull(),
};
CardMapper mapper = new CardMapper();
AccumulatorCombinerReducer<Integer, ?, Integer> accumulatorCombinerReducer = StreamUtils.summingIntAccumulatorCombinerReducer();
MapReduceFramework<Deck, Suit, Integer, ?, Integer> framework = new StreamMapReduceFramework<>(mapper, accumulatorCombinerReducer);
Map<Suit, Integer> map = framework.mapReduceAll(decks);
map.entrySet().forEach(entry -> {
System.out.println(entry);
});
|
CardMapReduceClient Output |
---|
HEARTS=216 SPADES=216 DIAMONDS=216 CLUBS=216 |
Word Count Mapping Clients
The word count mapping example clients use the beginning of If--- by Rudyard Kipling.
WordCountMapperClient
class: | WordCountMapperClient.java | CLIENT |
package: | mapreduce.apps.wordcount.client | |
source folder: | student/src/main/java |
WordCountMapperClient |
---|
TextSection textSection = new TextSection("If you can keep your head when all about you");
WordCountMapper mapper = new WordCountMapper();
List<Map.Entry<String, Integer>> keyValuePairs = mapper.map(textSection);
keyValuePairs.forEach(kv -> {
System.out.println(kv);
});
|
WordCountMapperClient Output |
---|
DefaultEntry[if=>1] DefaultEntry[you=>1] DefaultEntry[can=>1] DefaultEntry[keep=>1] DefaultEntry[your=>1] DefaultEntry[head=>1] DefaultEntry[when=>1] DefaultEntry[all=>1] DefaultEntry[about=>1] DefaultEntry[you=>1] |
WordCountMapReduceClient
class: | WordCountMapReduceClient.java | CLIENT |
package: | mapreduce.apps.wordcount.client | |
source folder: | student/src/main/java |
WordCountMapReduceClient |
---|
TextSection[] textSections = {
new TextSection("If you can keep your head when all about you"),
new TextSection(" Are losing theirs and blaming it on you,"),
};
WordCountMapper mapper = new WordCountMapper();
AccumulatorCombinerReducer<Integer, ?, Integer> accumulatorCombinerReducer = StreamUtils.summingIntAccumulatorCombinerReducer();
MapReduceFramework<TextSection, String, Integer, ?, Integer> framework = new StreamMapReduceFramework<>(mapper, accumulatorCombinerReducer);
Map<String, Integer> map = framework.mapReduceAll(textSections);
map.entrySet().forEach(entry -> {
System.out.println(entry);
});
|
WordCountMapReduceClient Output |
---|
all=1 theirs=1 about=1 it=1 your=1 when=1 losing=1 head=1 can=1 blaming=1 are=1 and=1 keep=1 if=1 you=3 on=1 |
K-mer Mapping Clients
The word count mapping example clients use the beginning of If--- by Rudyard Kipling.
KMerMapperClient
class: | KMerMapperClient.java | CLIENT |
package: | mapreduce.apps.wordcount.client | |
source folder: | student/src/main/java |
KMerMapperClient |
---|
byte[] sequence = "ACTCATGAG".getBytes(StandardCharsets.UTF_8);
KMerMapper mapper = new KMerMapper(3);
List<Map.Entry<String, Integer>> keyValuePairs = mapper.map(sequence);
keyValuePairs.forEach(kv -> {
System.out.println(kv);
});
|
KMerMapperClient Output |
---|
DefaultEntry[ACT=>1] DefaultEntry[CTC=>1] DefaultEntry[TCA=>1] DefaultEntry[CAT=>1] DefaultEntry[ATG=>1] DefaultEntry[TGA=>1] DefaultEntry[GAG=>1] |
KMerMapReduceClient
class: | KMerMapReduceClient.java | CLIENT |
package: | mapreduce.apps.wordcount.client | |
source folder: | student/src/main/java |
KMerMapReduceClient |
---|
byte[][] sequences = {
"ACTCATGAG".getBytes(StandardCharsets.UTF_8),
"CATGAAAAAA".getBytes(StandardCharsets.UTF_8),
};
KMerMapper mapper = new KMerMapper(3);
AccumulatorCombinerReducer<Integer, ?, Integer> accumulatorCombinerReducer = StreamUtils.summingIntAccumulatorCombinerReducer();
MapReduceFramework<byte[], String, Integer, ?, Integer> framework = new StreamMapReduceFramework<>(mapper, accumulatorCombinerReducer);
Map<String, Integer> map = framework.mapReduceAll(sequences);
map.entrySet().forEach(entry -> {
System.out.println(entry);
});
|
KMerMapReduceClient Output |
---|
AAA=4 ACT=1 TCA=1 CTC=1 ATG=2 GAA=1 CAT=2 GAG=1 TGA=2 |
Code To Implement
CardMapper
The specification for this mapper is outlined in the prep video:
Video: MapReduce Tutorial |
---|
Video: Learning MapReduce with Playing Cards |
---|
Non-numeric cards are considered to be bad data and ignored. Numeric cards should be emitted with their suit as the key and the numeric value as the value. Emitted key-value pairs are returned in a list of Entries.
class: | CardMapper.java | |
methods: | map | |
package: | mapreduce.app.cards.exercise | |
source folder: | student/src/main/java |
method: List<Map.Entry<Suit, Integer>> map(Deck deck)
(sequential implementation only)
Word Count Mapper
class: | WordCountMapper.java | |
methods: | map | |
package: | mapreduce.apps.wordcount.exercise | |
source folder: | student/src/main/java |
method: List<Map.Entry<String, Integer>> map(TextSection textSection)
(sequential implementation only)
Counting occurrences of words in text is a classic example of MapReduce. We will ignore any zero length words and convert the remaining words to lower-case so as to get a case insensitive count. Emitting each lower-cased word as the key with the value of 1 should do the trick here.
Hint: Look at the methods in TextSection and the toLowerCase() method for strings for assistance.
K-mer Count Mapper
K-mer counting is a useful technique in bioinformatics.
Further background information on k-mer counting can be found here.
The 3-mers in the chromosome data:
ACTCATGAG
are:
ACT CTC TCA CAT ATG TGA GAG
The 4-mers in that same chromosome data:
ACTCATGAG
are:
ACTC CTCA TCAT CATG ATGA TGAG
class: | KMerMapper.java | |
methods: | map | |
package: | mapreduce.apps.kmer.studio | |
source folder: | student/src/main/java |
method: List<Map.Entry<String, Integer>> map(byte[] sequence)
(sequential implementation only)
Take note of the private instance variable declared and initialized for you. Be sure to use the provided toStringKMer(sequence, offset, kMerLength) method to generate your k-mers:
private static String toStringKMer(byte[] sequence, int offset, int kMerLength) {
return new String(sequence, offset, kMerLength, StandardCharsets.UTF_8);
}
This mapper is similar to the #Word Count Mapper except that the k-mers overlap with each other while words are separate.
As the emitted values for each key will be later summed up in the reduction phase, what value makes sense to emit with each key?
Testing Your Solution
class: | _MappersSuitableForPairingWithIntSummingReducerTestSuite.java | |
package: | mapreduce.apps | |
source folder: | testing/src/test/java |
Pledge, Acknowledgments, Citations
file: | map-reduce-mapper-pledge-acknowledgments-citations.txt |
More info about the Honor Pledge