Difference between revisions of "Ranges"
Line 34: | Line 34: | ||
{{Sequential|public Iterator<Integer> iterator()}} | {{Sequential|public Iterator<Integer> iterator()}} | ||
− | class Range implements the Iterable<Integer> interface. As such, it must implement the iterator method. | + | class Range implements the Iterable<Integer> interface. As such, it must implement the iterator method. [[#RangeIterator|class RangeIterator]] outlined in the next section will provide a skeleton to fill in. |
== RangeIterator == | == RangeIterator == |
Revision as of 02:37, 2 February 2023
credit for this assignment: Finn Voichick and Dennis Cosgrove
Contents
Motivation
Coarsening, or n-way split as we tend to call it in this course, comes up a fair amount. In this studio, we will create a Range class and a slice utility method, that allows us to split up our data n-times (depending on what value we pass in) in a consistent organized fashion. This makes sure that each thread is balanced in the work that it does, minimizing the Critical Path Length.
Since we will be utilizing this class throughout the semester in different studios and assignments, it is important that data is split up in a specific way. The tests should help make sure your solution is strictly adhering to the specification.
Mistakes To Avoid
Warning: Do NOT Parallelize |
This studio is about creating an easier way to split data so that it can be worked on in parallel. The splitting of the data is still done sequentially. That means at no point in this studio should you be using fork() or join().
Code to Implement
Warning: There is a Range.java and a Ranges.java. Implement Range.java first |
class Range
class: | Range.java | |
methods: | constructor min maxExclusive iterator |
|
package: | range.exercise | |
source folder: | student/src/main/java |
constructor
method: public Range(int min, int maxExclusive)
(sequential implementation only)
To support the required methods below we will need to hang onto the parameter values as instance variables (a.k.a. fields).
min
method: public int min()
(sequential implementation only)
maxExclusive
method: public int maxExclusive()
(sequential implementation only)
iterator
method: public Iterator<Integer> iterator()
(sequential implementation only)
class Range implements the Iterable<Integer> interface. As such, it must implement the iterator method. class RangeIterator outlined in the next section will provide a skeleton to fill in.
RangeIterator
hasNext()
next()
DOM NodeList Iterable Demo
class Ranges
class: | Ranges.java | |
methods: | slice | |
package: | range.exercise | |
source folder: | student/src/main/java |
slice
method: public static Range[] slice(int min, int maxExclusive, int numRanges)
(sequential implementation only)
Given a range [minInclusive, maxExclusive) and a number of slices to make, return an array of Ranges. Understanding what a Range is and how it is used is important when writing this solution.
The goal is to have each slice's range be the entire array when put together, with no overlap. Some examples are giving below. Working through more examples can be a helpful way of figuring out what code to write if you get stuck.
Tip: For any instance of Range, the minimum is inclusive and the maximum is exclusive. This means for two slices next to each other, range1.getMaxExclusive() is equal to range2.getMinInclusive(). |
Strict Specification
We are overly strict about the specification of how the data must be sliced up. This is to allow to accurately compare results intermediate results throughout the semester.
Example: array.length=8; numRanges=4
A | A | B | B | C | C | D | D |
Slice ID | Min Inclusive | Max Exclusive |
---|---|---|
0 | 0 | 2 |
1 | 2 | 4 |
2 | 4 | 6 |
3 | 6 | 8 |
Example: array.length=7; numRanges=4
Distribute the remainder 1 each to the lower end slices (the first few slices or the lower index slices).
A | A | B | B | C | C | D |
Slice ID | Min Inclusive | Max Exclusive |
---|---|---|
0 | 0 | 2 |
1 | 2 | 4 |
2 | 4 | 6 |
3 | 6 | 7 |
Warning:Do NOT slice up the data by giving all of the remainder to one slice |
A
|B
|C
|D
|D
|D
|D
Giving all the remainder to one range does not most effectively balance the workload!
Testing Your Solution
Correctness
class: | __RangeExerciseTestSuite.java | |
package: | range.example | |
source folder: | testing/src/test/java |
Pledge, Acknowledgments, Citations
file: | exercise-ranges-pledge-acknowledgments-citations.txt |
More info about the Honor Pledge