Difference between revisions of "MatrixMultiply"

From CSE231 Wiki
Jump to navigation Jump to search
Line 51: Line 51:
 
{{Parallel|public double[][] multiply(double[][] a, double[][] b)}}
 
{{Parallel|public double[][] multiply(double[][] a, double[][] b)}}
  
In this implementation, you will simply convert the sequential solution into a parallel one using parallel fork loops.
+
In this implementation, you will simply convert the sequential solution into a parallel one using two nested parallel fork loops.
  
 
==Loop2dMatrixMultiplier==
 
==Loop2dMatrixMultiplier==

Revision as of 22:07, 1 February 2022

Motivation

We gain experience using the parallel for loop constructs.

Background

Matrix multiplication is a simple mathematical operation which we will replicate in this studio. For our purposes, we will only deal with square matrices (same number of rows and columns). However, we will approach this problem with several different parallel constructs and approaches.

For those unfamiliar on how to multiply two matrices, take a look at these overviews:

If is an matrix and is an matrix

for each i=[0..n) and for each j=[0..p)

source: Matrix Multiplication on Wikipedia

Code To Investigate

Demo Video

SequentialMatrixMultiplier

class: SequentialMatrixMultiplier.java DEMO: Java.png
methods: multiply
package: matrixmultiply.demo
source folder: src//java

SequentialMatrixMultiplierClient

class: SequentialMatrixMultiplierClient.java DEMO: Java.png
methods: main
package: matrixmultiply.client
source folder: src//java

The Core Questions

  • What are the tasks?
  • What is the data?
  • Is the data mutable?
  • If so, how is it shared?

Code To Implement

There are three methods you will need to implement, all of which are different ways to use parallel for loops to solve the problem. To assist you, the sequential implementation has already been completed for you. We recommend starting from the top and working your way down. There is also an optional recursive implementation and a manual grouping implementation which has been done for you (this is just to demonstrate how chunking works behind the scenes).

LoopLoopMatrixMultiplier

class: LoopLoopMatrixMultiplier.java Java.png
methods: multiply
package: matrixmultiply.exercise
source folder: student/src/main/java

method: public double[][] multiply(double[][] a, double[][] b) Parallel.svg (parallel implementation required)

In this implementation, you will simply convert the sequential solution into a parallel one using two nested parallel fork loops.

Loop2dMatrixMultiplier

class: Loop2dMatrixMultiplier.java Java.png
methods: multiply
package: matrixmultiply.exercise
source folder: student/src/main/java

method: public double[][] multiply(double[][] a, double[][] b) Parallel.svg (parallel implementation required)


Loop2dAutoCoarsenMatrixMultiplier

class: Loop2dAutoCoarsenMatrixMultiplier.java Java.png
methods: multiply
package: matrixmultiply.exercise
source folder: student/src/main/java

method: public double[][] multiply(double[][] a, double[][] b) Parallel.svg (parallel implementation required)


Testing Your Solution

Correctness

class: __MatrixMultiplyTestSuite.java Junit.png
package: matrixmultiply.studio
source folder: testing/src/test/java

Performance

class: MatrixMultiplicationTiming.java Noun Project stopwatch icon 386232 cc.svg
package: matrixmultiply.studio
source folder: src/main/java