1.11.1 Rebar in ABAQUS/Standard

Product: ABAQUS/Standard  

I. Rebars in membranes

Elements tested

M3D4    M3D4R    M3D8    M3D8R   

Problem description

These tests verify the modeling of element reinforcements in membrane elements. The rebar option is tested in the areas of kinematics, prestressing of the rebar, compatibility with material property definitions, and compatibility with prescribed temperatures and field variables. All membranes that allow rebar are tested and compared to continuum and shell elements. Each input file contains tests for membrane, continuum, and shell elements.

Kinematics are tested by applying a uniaxial displacement with various rebar orientations. In the first test rebar are placed along the -axis, and a displacement is prescribed in the -direction. In the second test rebar are oriented at 30° from the -axis. Again, a prescribed displacement is applied along the -axis. In the third test rebar are oriented along the -axis, and a displacement is prescribed in the -direction. The fourth test includes large geometry changes. The rebar are initially defined at 30° from the -axis. A large displacement is prescribed in the -direction and causes the orientation of the rebar to change because of the large shearing strains. The fifth and sixth tests define various rebar orientations by means of the ORIENTATION parameter on the *REBAR LAYER option. In the seventh test rebar angle output is measured with respect to the second isoparametric direction.

The material test includes five combinations of material definitions for the base element and the rebar. For each combination a single element is loaded with a prescribed uniaxial displacement. Elastic, elastic-plastic, hyperelastic, and hypoelastic material properties are used. The combinations are as follows: elastic base and elastic rebar, elastic base and elastic-plastic rebar, elastic-plastic base and elastic rebar, hyperelastic base and elastic rebar, and elastic base and hypoelastic rebar.

Thermal expansion of the rebar is tested by constraining all the degrees of freedom of the elements and applying a temperature load. The rebar is positioned along the -axis. The base material is dependent on temperature and the first field variable. The rebar properties are dependent on the second field variable. Step 1 uniformly increases the temperature from 0° to 100°, with both field variables set to 1. Step 2 increases the first field variable from 0 to 1, and Step 3 increases the second field variable from 0 to 1.

Initial stresses are tested in two ways. The tests consist of a single underlying membrane element with isoparametric rebar. In the first test an initial tensile stress is applied to the rebar, and no initial stresses are applied to the underlying membrane element. Thus, the membrane element will compress, and the initial rebar tensile stress will be reduced until equilibrium with the underlying solid is reached. The second test applies an initial tensile stress to the rebar but forces this initial stress to remain constant by means of the *PRESTRESS HOLD option. The stress in the rebar remains unchanged, whereas the underlying membrane deforms to equilibrate the rebar stress.

Input file em_postoutput.inp tests the *POST OUTPUT option and ensures that rebar output quantities are written properly to the restart file.

Input file em_nodalthick.inp tests variable thickness shells and membranes containing rebar. The *NODAL THICKNESS option specifies a linearly varying element thickness.

Results and discussion

The results agree with the analytically obtained values.

Input files

em_kinematics1.inp

Rebar, 0° orientation.

em_kinematics2.inp

Rebar, 30° orientation.

em_kinematics3.inp

Rebar, 90° orientation.

em_kinematics4.inp

Rebar, 30° orientation, finite strains.

em_kinematics5.inp

Rebar, defined using the ORIENTATION parameter on *REBAR LAYER.

em_kinematics6.inp

Rebar, referencing user-defined *ORIENTATION.

em_kinematics6.f

User subroutine ORIENT used in em_kinematics6.inp.

em_kinematics7.inp

Rebar, test of rebar angle output measured with respect to the second isoparametric direction.

em_material.inp

Rebar, 0° orientation, test of material combinations, perturbation step with *LOAD CASE.

em_thermal.inp

Rebar, 0° orientation, test of temperature and field variable dependence.

em_prestress.inp

Rebar, 0° orientation, test of initial stresses with and without *PRESTRESS HOLD.

em_prestress.f

User subroutine SIGINI used in em_prestress.inp.

em_postoutput.inp

Rebar, postprocessing with the *POST OUTPUT option.

em_nodalthick.inp

Rebar, variable thicknesses using the *NODAL THICKNESS option.

II. Rebars in surface elements

Elements tested

SFM3D3    SFM3D4    SFM3D4R    SFM3D6    SFM3D8    SFM3D8R   

Problem description

Model:

Similar to the one used for rebars in membranes.

Material:

Similar to the one used for rebars in membranes.

Results and discussion

The results agree with those for rebars in membranes when the material stiffness for the membranes is set nearly to zero.

Input files

ex_kinematics1.inp

Rebar, 0° orientation.

ex_kinematics2.inp

Rebar, 30° orientation.

ex_kinematics3.inp

Rebar, 30° orientation, finite strains.

ex_kinematics4.inp

Rebar, defined using the ORIENTATION parameter on *REBAR LAYER.

ex_kinematics5.inp

Rebar, referencing user-defined *ORIENTATION.

ex_kinematics5.f

User subroutine ORIENT used in ex_kinematics5.inp.

ex_material.inp

Rebar, 0° orientation, test of material combinations.

ex_thermal.inp

Rebar, 0° orientation, test of temperature and field variable dependence.

ex_prestress.inp

Rebar, 0° orientation, test of initial stresses with and without *PRESTRESS HOLD.

ex_prestress.f

User subroutine SIGINI used in ex_prestress.inp.

III. Rebars in general shells

Elements tested

S4    S4R    S8R    S8R5    SC8R   

Problem description

Model:

Planar dimensions10 × 10
Thickness2.0 (for tensile test), 10.0 (for bending test)
 

Material:

Young's modulus of bulk material1.0 (for tensile test), 3 × 106 (for bending test)
Young's modulus of rebar 30 × 106
Poisson's ratio of both materials0.0
Reinforcement for tensile testREBAR1, 1., 2.5, 0., RBMAT, 0, 1
 REBAR2, 1., 2.5, 0., RBMAT, 90, 1
 REBAR3, 1., 3.5355, 0., RBMAT, 45, 1
 REBAR4, 1., 3.5355, 0., RBMAT, 135, 1
  
Reinforcement for bending testREBAR, .1, 2.5, –2.5, RBMAT, 0, 1
  

Results and discussion

The results agree with the analytically obtained values.

Input files

ese4sxr4.inp

S4 elements; tension with rebar; 0° orientation, 45° orientation, 90° orientation, and 135° orientation.

ese4sxr3.inp

S4 elements; bending with rebar; 0° orientation.

esf4sxr4.inp

S4R elements; tension with rebar; 0° orientation, 45° orientation, 90° orientation, and 135° orientation.

esf4sxr3.inp

S4R elements; bending with rebar; 0° orientation.

es68sxr4.inp

S8R elements; tension with rebar; 0° orientation, 45° orientation, 90° orientation, and 135° orientation.

es68sxr3.inp

S8R elements; bending with rebar; 0° orientation.

es58sxrd.inp

S8R5 elements; bending with rebar; 0° orientation; response spectrum.

esc8sxr4.inp

SC8R elements; tension with rebar; 0° orientation, 45° orientation, 90° orientation, and 135° orientation.

esc8sxr3.inp

SC8R elements; bending with rebar; 0° orientation.

IV. Rebars in axisymmetric membranes

Elements tested

MAX1    MAX2    MGAX1    MGAX2   

Problem description

Model:

Length5.0
Midsurface radius2.0
Thickness0.05

Material:

Young's modulus of bulk material1.0 × 105
Young's modulus of rebar1.0 × 108
Poisson's ratio of both materials0.495
Reinforcement for tension and torsion testsREBAR, 0.005, 0.31416, 0, RBMAT, 50

Results and discussion

If rebars are not axial (rebar angle 0°) or circumferential (rebar angle 90°), element types MGAX1 and MGAX2 predict twist under axial tension (Step 1 in all the input files). The twist angle is determined by the initial rebar angle and the material properties. If the Poisson's ratio of the material is sufficiently different from zero, the twist angle changes sign at some intermediate rebar angle between 0° and 90°. This result is accompanied by a change in sign of the stress in the rebar. This behavior is illustrated in Figure 1.11.1–1(a), where results for the twist angle are shown for element types MGAX1, MGAX2, and CGAX4R (axisymmetric continuum element with twist) when both the rebar and the bulk materials are almost incompressible. Figure 1.11.1–1(b) shows the evolution of this behavior with the Poisson's ratios of the materials. For 0.05 the twist angle does not change sign as the initial rebar angle changes from 0° to 90°.

Input files

ema2srri.inp

MAX1 elements, tension.

ema3srri.inp

MAX2 elements, tension.

emg2srri.inp

MGAX1 elements, tension and torsion

emg3srri.inp

MGAX2 elements, tension and torsion.

V. Rebars in axisymmetric surface elements

Elements tested

SFMAX1    SFMAX2    SFMGAX1    SFMGAX2   

Problem description

Model:

Similar to the one used for rebars in axisymmetric membranes.

Material:

Similar to the one used for rebars in axisymmetric membranes.

Results and discussion

The results agree with those for rebars in axisymmetric membranes when the material stiffness for the membranes is set nearly to zero.

Input files

exa2srri.inp

SFMAX1 elements, tension.

exa3srri.inp

SFMAX2 elements, tension.

exg2srri.inp

SFMGAX1 elements, tension and torsion

exg3srri.inp

SFMGAX2 elements, tension and torsion.

Figure

Figure 1.11.1–1 Variation of twist with rebar angle.

VI. Rebars in axisymmetric shells

Elements tested

SAX1    SAX2   

Problem description

Model:

Length10.0
Inside radius for hoop test5.0 (Flat solid disk for radial test)
Thickness2.0

Material:

Young's modulus of bulk material1.0
Young's modulus of rebar30 × 106
Poisson's ratio of both materials0.0
Reinforcement for hoop testREBAR1, 1, 2.5, –1, RBMAT, 90
 REBAR2, 1, 2.5, 1, RBMAT, 90
Reinforcement for radial testREBAR, 1, 46.245, 0, RBMAT, 0

Results and discussion

The results agree with the analytically obtained values.

Input files

esa2sxrh.inp

SAX1 elements, hoop rebar.

esa2sxrr.inp

SAX1 elements, radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

esa3sxrh.inp

SAX2 elements, hoop rebar.

esa3sxrr.inp

SAX2 elements, radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

VII. Rebars in general surface elements embedded in three-dimensional solids

Elements tested

C3D8    C3D20    SFM3D4R    SFM3D8R   

Problem description

Model:

Cubic dimension10.0 × 10.0 × 10.0

Material:

Young's modulus of bulk material1.0
Young's modulus of rebar30 × 106
Poisson's ratio of both materials0.0
ReinforcementREBAR, 1., 2.5, 0., RBMAT, 0, 1

Results and discussion

The results agree with the analytically obtained values.

Input files

ec38sfrg.inp

C3D8 with SFM3D4R elements, rebar with 0° orientation.

ec3ksfrg.inp

C3D20 with SFM3D8R elements, rebar with 0° orientation.

VIII. Rebars in axisymmetric surface elements embedded in axisymmetric solids and axisymmetric solids with twist

Elements tested

CAX4    CAX8    CGAX4    CGAX4R    CGAX4T    CGAX8    CGAX8T    SFMAX1    SFMAX2    SFMGAX1    SFMGAX2   

Problem description

Model:

Planar dimensions10.0 × 10.0
Inside radius0.0

Material:

Young's modulus of bulk material1.0
Young's modulus of rebar30 × 106
Poisson's ratio of both materials0.0
Reinforcement for hoop testREBAR1, .04, .3333, 0., RBMAT, 90
Reinforcement for radial testREBAR2, .04, 46.245, 0., RBMAT, 0

Results and discussion

The results agree with the analytically obtained values.

Input files

eca4sfri.inp

CAX4 elements with SFMAX1 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4sfr2.inp

CAX4 elements with SFMAX1 elements, radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4sfrs.inp

CAX4 elements with SFMAX1 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8sfri.inp

CAX8 elements with SFMAX2 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8sfr2.inp

CAX8 elements with SFMAX2 elements, radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8sfrs.inp

CAX8 elements with SFMAX2 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4gfri.inp

CGAX4 elements with SFMGAX1 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4gfrs.inp

CGAX4 elements with SFMGAX1 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4gfr2.inp

CGAX4 elements with SFMGAX1 elements, radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4hfri.inp

CGAX4T elements with SFMGAX1 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4hfrs.inp

CGAX4T elements with SFMGAX1 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca4hfr2.inp

CGAX4T elements with SFMGAX1 elements, radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8gfri.inp

CGAX8 elements with SFMGAX2 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8gfrs.inp

CGAX8 elements with SFMGAX2 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8gfr2.inp

CGAX8 elements with SFMGAX2 elements; radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8hfri.inp

CGAX8T elements with SFMGAX2 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

eca8hfrs.inp

CGAX8T elements with SFMGAX2 elements, hoop rebar, and radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER

eca8hfr2.inp

CGAX8T elements with SFMGAX2 elements; radial rebar using the ANGULAR SPACING parameter on *REBAR LAYER.

IX. Rebars in plane stress and plane strain solids

Elements tested

CPE4    CPE8    CPS4    CPS8   

Problem description

Model:

Planar dimension10.0 × 10.0
Thickness1.0

Material:

Young's modulus of bulk material1.0
Young's modulus of rebar30 × 106
Reinforcement 
Isoparametric:Skew:
PLANE, .04, .25, 0., .25, 2PLANE, .04, .25, 0.
PLANE, .04, .25, 0., .50, 2.5, .5
PLANE, .04, .25, 0., .75, 2PLANE, .04, .25, 0.
PLANE, .04, .25, 0., .25, 10., 1., 0., 1.
PLANE, .04, .25, 0., .50, 1PLANE, .04, .25, 0.
PLANE, .04, .25, 0., .75, 10., 0., .5, .5
 PLANE, .04, .25
 0., .5, 0., 0., .5
 PLANE, .04, .25, 0.
 1., 0., 1.
 PLANE, .04, .25, 0.
 0., .5, .5

Results and discussion

The results agree with the analytically obtained values.

Input files

ece4sfrg.inp

CPE4 elements, isoparametric and skew rebar.

ecs4sfrg.inp

CPS4 elements, isoparametric and skew rebar.

ece8sfrg.inp

CPE8 elements, isoparametric and skew rebar.

ecs8sfrg.inp

CPS8 elements, isoparametric and skew rebar.

ecs4sfrd.inp

CPS4 elements, isoparametric and skew rebar, linear dynamic (*FREQUENCY, *STEADY STATE DYNAMICS).

X. Single rebars in three-dimensional solids

Elements tested

C3D8    C3D20   

Problem description

Model:

Cubic dimension10.0 × 10.0 × 10.0

Material:

Young's modulus of bulk material1.0
Young's modulus of rebar30 × 106
Poisson's ratio of both materials0.0
Reinforcement for single rebar testBRICK, 1., .5, .5, 1
 BRICK, 1., .5, .5, 2
 BRICK, 1., .5, .5, 3
  

Results and discussion

The results agree with the analytically obtained values.

Input files

ec38sfr1.inp

C3D8 elements, single rebar.

ec3ksfr1.inp

C3D20 elements, single rebar

XI. Single rebar in axisymmetric solids and axisymmetric solids with twist

Elements tested

CAX4    CAX8    CGAX4    CGAX4R    CGAX4T    CGAX8    CGAX8T   

Problem description

Model:

Planar dimensions10.0 × 10.0
Inside radius0.0

Material:

Young's modulus of bulk material1.0
Young's modulus of rebar30 × 106
Poisson's ratio of both materials0.0
Reinforcement for single hoop rebar test 
AXSOL, .4, .25, .25 
AXSOL, .4, .50, .25 
AXSOL, .4, .75, .25 
AXSOL, .4, .25, .50 
AXSOL, .4, .50, .50 
AXSOL, .4, .75, .50 
AXSOL, .4, .25, .75 
AXSOL, .4, .50, .75 
AXSOL, .4, .75, .75 

Results and discussion

The results agree with the analytically obtained values.

Input files

eca4sfr2.inp

CAX4 elements, single hoop rebar.

eca8sfr2.inp

CAX8 elements, single hoop rebar.

eca4gfrn.inp

CGAX4 elements, single hoop rebar.

eca4gfr2.inp

CGAX4 elements, single hoop rebar.

eca4hfrn.inp

CGAX4T elements, single hoop rebar.

eca4hfr2.inp

CGAX4T elements, single hoop rebar.

eca8gfr2.inp

CGAX8 elements, single hoop rebar.

eca8hfr2.inp

CGAX8T elements, single hoop rebar.

XII. Rebars in beams

Element tested

B23   

Problem description

Model:

Length10.0 (300.0 in file eb2arxrd.inp)
Cross-section10.0 × 10.0 rectangular

Material:

Young's modulus of bulk material1.0 (for tensile test), 3 × 106 (for bending test)
Young's modulus of rebar30 × 106
Reinforcement for tensile testBEAM, 1., –2.5, –2.5
 BEAM, 1., 2.5, 2.5
Reinforcement for bending testBEAM, 1., –2.5, –2.5
 BEAM, 1., 2.5, –2.5

Results and discussion

The results agree with the analytically obtained values.

Input files

eb2arxrt.inp

B23 elements, tension.

eb2arxrb.inp

B23 elements, bending.

eb2arxrd.inp

B23 elements, bending, linear dynamic (*FREQUENCY, *MODAL DYNAMIC).