Computer Architecture
Section 2 Problems:
- 1. Evaluate the given Boolean functions for the variable values given
- A. X = (a + b)(c + d) given a = 1, b = 1, c = 0, d = 0
- B. Y = a + b * c + d given a = 0, b = 1, c = 0, d = 0
- C. Z = a * b * c * d' + a' * b * c * d' + a' * b' * c * d given a = 0, b = 1, c = 1, d = 0
- 2. Draw logic circuits that directly implement the following functions using logic gates. Do not simplify the equations.
- A. X = AB + A'B'
- B. Y = a + (b + (c + d))
- C. Z = abc' + a'bc + a'b'c
- D. W = mn + m'no + p
- 3. Prove the following theorems using Boolean algebraic manipulation using the basic Boolean algebra postulates
- A. X + X * Y = X
- B. X * (X + Y) = X
- C. X * Y + X * Y' = X
- D. (X + Y) * (X + Y') = X
- E. X * Y + X' * Z + Y * Z = X * Y + X' * Z
- F. (X + Y) * (X' + Z) * (Y + Z) = (X + Y) * (X' + Z)
- 4. Vahid 2.11
- 5. Vahid 2.17
- 6. Vahid 2.20
- 7. Vahid 2.27
- 8. Vahid 2.28
- 9. Vahid 2.29
- 10. Vahid 2.30
- 11. Vahid 2.31
- 12. Vahid 2.34
- 13. Vahid 2.48
- 14. Vahid 2.49
- 15. Vahid 2.52
- 16. Vahid 2.58. Implement as a sum of minterms.
- 17. Vahid 2.69
- 18. Design a 4 to 16 line decoder using 2 to 4 line decoders and the
minimum amount of additional combinational logic.
- 19. Design a 16 to 1 multiplexer using 4 to 1 multiplexers and the
minimum amount of additional combinational logic.
- 20. Using a 4 to 16 line decoder and one OR gate, design a circuit
that implements problem 15 (Vahid 2.58).
- 21. Using an 8 to 1 multiplexer and one NOT gate, design a circuit
that implements problem 15 (Vahid 2.58).
- 22. Using AND, OR, NAND, NOR, and NOT logic gates, design a 4 to 2 line
priority encoder with a valid output.