Difference between revisions of "ESE297 - Intro to Undergraduate Research"

From ESE497 Wiki
Jump to navigationJump to search
Line 12: Line 12:
 
** Part2: Implement algorithm using sbRIO robot and microphone array
 
** Part2: Implement algorithm using sbRIO robot and microphone array
 
== Lecture Notes ==
 
== Lecture Notes ==
* Week 1: [http://classes.engineering.wustl.edu/ese497/index.php/File:Presentation_Robotic_Microphone_Array.pdf Acoustic Source Location Background and Theory]
+
* Topic 1: [http://classes.engineering.wustl.edu/ese497/index.php/File:Presentation_Robotic_Microphone_Array.pdf Acoustic Source Location Background and Theory]
 
** Additional references:
 
** Additional references:
 
***[http://ese.wustl.edu/ContentFiles/Research/UndergraduateResearch/CompletedProjects/WebPages/fl08/JoshuaYork/index.html Joshua York, Acoustic Source Localization, ESE497, Fall 2008]
 
***[http://ese.wustl.edu/ContentFiles/Research/UndergraduateResearch/CompletedProjects/WebPages/fl08/JoshuaYork/index.html Joshua York, Acoustic Source Localization, ESE497, Fall 2008]
Line 18: Line 18:
 
** Task 1: Read the material that we discussed in our meeting today and the additional references listed above.  
 
** Task 1: Read the material that we discussed in our meeting today and the additional references listed above.  
 
** Task 2: Derive the expressions presented in slide 10.
 
** Task 2: Derive the expressions presented in slide 10.
* Week 2: Data Acquisition Basics
+
* Topic 2: Data Acquisition Basics
 
** [[media:LabVIEW_Introduction.pdf|LabVIEW Tutorial]]
 
** [[media:LabVIEW_Introduction.pdf|LabVIEW Tutorial]]
 
*** Task 3 - Finish Exercises
 
*** Task 3 - Finish Exercises
Line 27: Line 27:
 
**** Plot the Cross Correlation of the 2 channels and see if the peak is shifted from the middle, the number of samples you measured from the previous step.
 
**** Plot the Cross Correlation of the 2 channels and see if the peak is shifted from the middle, the number of samples you measured from the previous step.
 
***** Hints:
 
***** Hints:
******  
+
****** Functions -> Express -> Conv & Coff -> Corss Correlation
 +
****** This function requires that you extract the 2 channels from the DDT. To do this, use Functiions -> Express -> Sig Manip -> Single Waveform -> Channel 0 and then again for Channel 1. Connect the outputs of these to the X and Y inputs.
 
**** Plot the Spectrogram of Channel 0.
 
**** Plot the Spectrogram of Channel 0.
 
***** Hint: There is a good Spectrogram example that ships with LabVIEW. Go to Help -> Find Examples... and search for Spectrogram -> STFT Spectrogram Demo.vi. You can copy from this example and paste it into your code.
 
***** Hint: There is a good Spectrogram example that ships with LabVIEW. Go to Help -> Find Examples... and search for Spectrogram -> STFT Spectrogram Demo.vi. You can copy from this example and paste it into your code.
** Task 6 - Using the 4 microphone array and the metal data acquistion box, collect samples from all 4 channels and display them on your graph. Measure the delay between the signals - does it agree with the speed of sound?
+
* Topic 3: Filters Basics
* Week 3: Filters Basics
 
 
**[[Media:Filters_&_Application.pdf|Tutorial]]
 
**[[Media:Filters_&_Application.pdf|Tutorial]]

Revision as of 16:57, 3 February 2010

  • Meeting Time: Wednesday 8:30 - 10 am
  • Office Hours: Monday 8:30 - 10 am or by appointment
  • Team Members: Alex Gu, Andrew Wiens, Alexander Benjamin, Anisha Rastogi, Charlie Kang, Edison Kociu, Lisa Goldman, Michael Scholl, Sam Fok, Sarah Fern, Sophia (Xinyuan) Cui, Will Donnelly
  • PhD Supervisor: Sandeep, Andrew, Phani
  • Faculty Supervisor: Arye Nehorai
  • Goal:
    • Part1: Case Study - Study acoustic source localization using Microphone array
      • Background and Theory
      • Data Acquisition Basics
      • Introduction to Digital Signal Processing Tools
      • Graphical User Interface and Robot Control
    • Part2: Implement algorithm using sbRIO robot and microphone array

Lecture Notes

  • Topic 1: Acoustic Source Location Background and Theory
  • Topic 2: Data Acquisition Basics
    • LabVIEW Tutorial
      • Task 3 - Finish Exercises
    • Data Acquisition Basics
      • Task 4 - Finish exercise
      • Task 5 (due 2/10/2010)
        • Connect wires from A00 and AO1 to AI0+ and AI1+. Make sure that the Prototyping Power is on. Modify your vi to collect samples from both AI0 and AI1. Then open DelayedChirp2DAC.vi and run this vi. Zoom in in the time and frequency domain to examine the waveforms in detail. Describe in detail what you see. Measure the difference in time between both channels. Hint: Start and stop your Data Acquisition vi until the entire signal is in the middle of the buffer.
        • Plot the Cross Correlation of the 2 channels and see if the peak is shifted from the middle, the number of samples you measured from the previous step.
          • Hints:
            • Functions -> Express -> Conv & Coff -> Corss Correlation
            • This function requires that you extract the 2 channels from the DDT. To do this, use Functiions -> Express -> Sig Manip -> Single Waveform -> Channel 0 and then again for Channel 1. Connect the outputs of these to the X and Y inputs.
        • Plot the Spectrogram of Channel 0.
          • Hint: There is a good Spectrogram example that ships with LabVIEW. Go to Help -> Find Examples... and search for Spectrogram -> STFT Spectrogram Demo.vi. You can copy from this example and paste it into your code.
  • Topic 3: Filters Basics