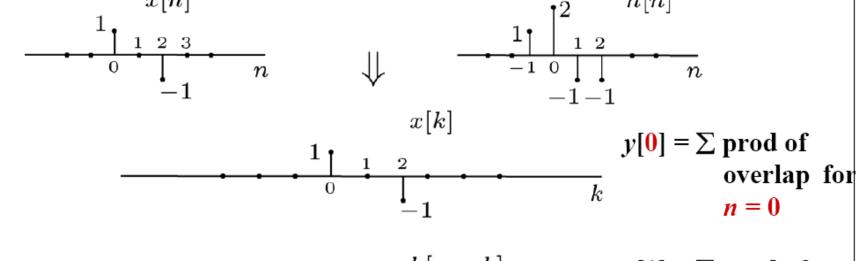
Filters

Phani Chavali

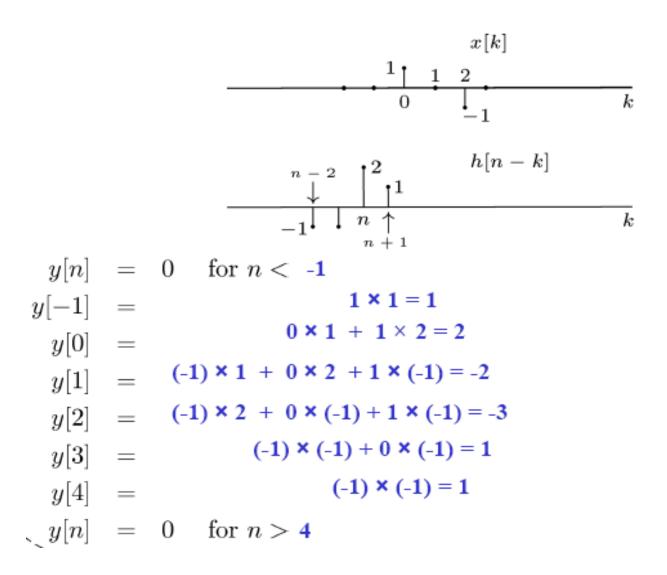
Filters

- Filtering is the most common signal processing procedure.
- Used as echo cancellers, equalizers, front end processing in RF receivers
- Used for modifying input signals by passing certain frequencies and attenuating others.
- Characterized by the impulse response like other Linear & Time Invariant systems.
- Both Analog and Digital Filters can be used.
- Analog
 - Uses analog electronic circuits made up of components like resistors and capacitors
 - Used widely for video enhancement in TV's
- Digital
 - Uses a general purpose processor for implementation
 - Used widely in many applications these days because of the flexibility they offer in design and implementation

Impulse Response & Frequency response

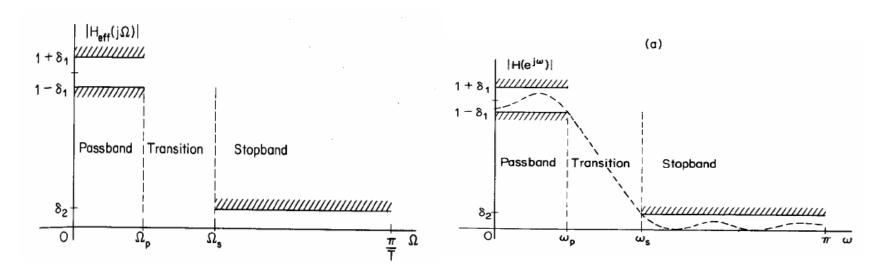

- The elements h[n] are called taps; depending on whether h[n] is a finite sequence or an infinite sequence, we call the filters as finite impulse response (FIR) or infinite impulse response (IIR) filters.
- Given the impulse response, the output of the filter y[n] for any input x[n] can be expressed as
 - $y[n]=x[n]*h[n]=\sum x[k]h[n-k]$
 - Reverse h in time around zero
 - y[n] is the dot product of x reversed h shifted n places to the left.
- The Fourier transform of the signal x[n] is called as Frequency transform.
 - Periodic with period 2π

Visualizing the calculation of y[n] = x[n] * h[n]


Choose value of *n* and consider it fixed

$$y[n] = \sum_{k=\infty}^{\infty} x[k]h[n-k]$$

View as functions of k with n fixed


Calculating Successive Values: Shift, Multiply, Sum

Types of Filters

- High pass filter
 - Attenuates the low frequency components of a signal and allows high frequency components
- Low pass filter
 - Attenuates the high frequency component and allows low frequency component
- Band pass filter
 - Allows a particular frequency band and attenuates the rest of the frequency components.
- Band stop filter
 - Attenuates the frequency components in a particular band and allows the other frequencies.

Filter Design

(From Discrete-Time Signal Processing, Oppenheim and Schafer)

- Ω_p is the Passband frequency
- Ω_s is the Stopband frequency
- δ_1 is the Passband Ripple
- δ_2 is the Stopband Attenuation

FIR Vs IIR Filters

Several factors influence the choice of FIR / IIR filters like linear phase, stability, hardware required to build etc.

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k]$$
 IIR filter equation

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$
 FIR filter equation

- Several techniques for designing filters (both FIR & IIR)
 - •We don't learn the design techniques in this class. We use Matlab as a design tool
- IIR filter types
 - Butterworth : Maximally flat
 - •Chebycheff: Equi-ripple in pass band (type 1) & stop band (type 2)
 - •Elliptical : Sharp transition region

Some Matlab commands

- plot
 - PLOT(Y) plots the columns of Y versus their index. PLOT(X,Y) plots vector Y versus vector X.
- fir1
 - B = FIR1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter coefficients in length N+1 vector B. B = FIR1(N,Wn,'high') designs an N'th order highpass filter.
- butter
 - [B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator).
- cheby1
 - [B,A] = CHEBY1(N,R,Wp) designs an Nth order lowpass digital Chebyshev filter with R decibels of peak-to-peak ripple in the passband. CHEBY1 returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator). Use R=0.5 as a starting point, if you are unsure about choosing R
- See also cheby2 & ellip
- filter
 - Y = FILTER(B,A,X) filters the data in vector X with the filter described by vectors A and B to create the filtered data Y where A and B are as in direct form II structure

Task

- Create a signal which is sum of two sinusoids with frequencies 5Hz and 15 Hz.
- Plot x(t) and X(f). Use time and frequency as x-axis while plotting, not the sample number.
- Create an FIR low pass filter with cutoff frequency 6Hz and plot the response of the filter. Change the order of filter and see how the frequency response changes.
- Pass the signal x(t) through the filter and plot the output.
- Create an FIR high pass filter with cutoff frequency 12 Hz and plot the response of the filter. Repeat for different orders.
- Pass the signal x(t) through the filter and plot the output.
- Repeat the experiment with an IIR filters of same order and see the performance difference