Electric Longboard

From ESE205 Wiki
Jump to navigation Jump to search

Project Overview

Our goal in this project was to modify the Longboard riding experience. In particular, when riding a Longboard for commuting or exercise there is no way to certainly know how far or fast one has ridden. Using a GPS chip and an encoder on the wheel we programmed a Raspberry Pi 2 Model B to collect data from the board. We could then display the data on a map of the area tracing the route taken. This design enhances the Longboard riding experience by making it interactive and goal driven, while also yielding tangible results.

Team Members

  • Max Cetta
  • Jacob Frank
  • Alden Welsch (TA)

Objectives

  1. Use GPS data to track distance and location of rides
    1. Use the serial port to connect to the GPS.
    2. Read data and write it into a text file.
    3. Display data
  2. Have an encoder on the wheel to measure top ground speed and average speed over a ride
    1. Designing and printing the encoder
    2. Wiring the ADC and using SPI pins to communicate with the Raspberry Pi
    3. Writing code to filter and interpret the data to locate peaks

Challenges

  1. Building Encoders Building and programming the encoders so it can reliably tell us how fast the board is traveling, especially at high speeds when the wheel may spin many times a second. Also figuring out how to distinguish which direction the longboard wheel is spinning.
  2. GPS Chip We aren not currently familiar with how to interpret GPS chip data. We will need to familiarize ourselves with GPS chip programming, and calculating distance using coordinates. Also, making a reinforced program that will filter out erroneous data due to environmental factors.
  3. Mounting Taking all of our components and putting them in a compact container which can be secured to the longboard. We need to maintain as light a design as possible considering the board is being manually powered, while still keeping all the components safe and dry.
  4. Automation Ideally this circuit would be able start and stop on its own based on whether it is being ridden. Because we are using a Raspberry Pi we will be able to extract the data we want later eliminating the need for real time remote display or control. The difficulty will be figuring out how to kick start the circuit.
  5. LED Control In order to maximize the brightness of the headlights we need to directly hook the LED's up to whatever battery we have. Using an LED driver we hope to be able to keep constant voltage across all LED's while maintaining control of each individually.

Budget

Item Quantity Price Vendor Link
GPS Receiver - GP-20U7 (56 Channel) 1 $15.95 Sparkfun https://www.sparkfun.com/products/13740
Mini Photocell 2 $1.50 Sparkfun https://www.sparkfun.com/products/9088
Analog to Digital Converter - MCP3002 1 $2.30 Sparkfun https://www.sparkfun.com/products/8636
Raspberry Pi 2 - Model B (8GB Bundle) 1 $49.95 Sparkfun https://www.sparkfun.com/products/13724
Resistor Kit - 1/4W (500 total) 1 $7.95 Sparkfun https://www.sparkfun.com/products/10969
LED - Basic Green 5mm 2 $0.35 Sparkfun https://www.sparkfun.com/products/9592
Tontec® Raspberry Pi Case 1 $7.98 Amazon http://www.amazon.com/Tontec%AE-Raspberry-Black-Enclosure-Transparent/dp/B00NUN98UW?ie=UTF8&psc=1&redirect=true&ref_=od_aui_detailpages00
KMASHI 10000mAh Battery 1 $13.99 Amazon http://www.amazon.com/KMASHI-10000mAh-External-Battery-Portable/dp/B00JM59JPG?ie=UTF8&psc=1&redirect=true&ref_=oh_aui_detailpage_o04_s00
Total $101.82


Gantt Chart
Timeline