Visual Beats

From ESE205 Wiki
Jump to navigation Jump to search

Overview


This project is inspired by Cymatics, the study of visualizing sound through the representation of physical mediums. The common method to visualize sound in Cymatics is by creating a frequency on a plate that vibrates a medium (such as sand or water) placed on top. The more in tune a frequency is to the plate, the more complex of a geometric shape (nodal lines) the sand creates. We initially plan on experimenting with an online frequency generator and a metal plate in order to see different kinds of standing waves we can form. Once we have found specific frequencies that resonate well with the plate, we will choose one frequency and convert it into a tone playable through a button all through the works of an Arduino. If this is successful, we will add more buttons with varying tones so that people can play around, creating their own beats in order to “see” what physical form their music takes on.

The Team

  • Sudeep Raj
  • Han Wang
  • Li Gao

Objectives


  • Finding several resonating frequencies of the plate since stable figures are obtained the best at these frequencies
  • Achieving a consistent image will depend on the distribution of sand (or silica grains) spread on the plate since the higher density nodes will be providing the form we seek.
  • Having at the least 1 diametric and radial node pattern that is playable on the Arduino button.
    • The higher the count on both diametric and radial nodes, the better
  • (Only if the former is successful) During the demo, anyone should be able to play with the buttons and form images on their own (although we will prepare/practice some melodies)

Challenges


Most of the hardware we will use can be purchased, but there are still many foreseen challenges we will encounter:

  • We don’t know the resonant frequencies of our specific plate are, so we will have to find them using a range of frequencies from 20Hz to 2kHz (range is considered in order to stay safe and based on an article that ran a similar experiment)
  • Preventing damage to exciter/amp (clipping, overheating, etc)
  • We may exceed our budget if our trials keep failing, so we need to form detailed plans on how we will run our experiments in order to prevent going over our budget
  • Finding the most effective way to reuse and not waste our sand
  • Assembling all our equipment in a neat and organized way for demo

Budget


Owned

Est. Total

  • ~$133

Schematics and Sketches


Speaker&Platform.JPG 3-D graphing.png On the bottom is a 3/4 in common birch plywood. We stick a 400w speaker(8 in diameter) to it and put a wooden cylinder (1 in diameter) on the top of the speaker. We then stick a 12 * 12, 0.063 in thick aluminum platform to the top of wooden cylinder.

Theory/Resources/Misc


The choices for the items under our budget are not arbitrary:

  • The amplifier and subwoofer were chosen based on an article found on in the American Journal of Physics (AAPT). The article conducted an identical experiment and recommended using an amplifier that outputs at least 15 Watts and thus a sub that can handle such power
  • We concluded with a thickness of 0.063 for the Aluminum Sheet as as it satisfies the 6 assumptions presented in Kirchoff’s Plate Theory

Reproducibility of different shapes do not rely on the assembly of the setup:

  • The only two factors needed to reproduce a shape found is by using the same frequency and the arbitrary boundary conditions created (Noted from Jensen's Article (Page 505))
    • We will not be experimenting with different boundary conditions and will only be using the center of the plate as the point of excitation (unfortunately, this will reduce the chances of us finding complex symmetrical patterns, but will not restrict us too far);Also, placing our exciter at the center of the plate will buildup the standing waves on the plate, so that the desired sand patterns will be more obvious.

3D/2D Graphing Using Mathematica:

Gantt Chart


GanttChart2.0VB.png