Difference between revisions of "Visual Beats"

From ESE205 Wiki
Jump to navigation Jump to search
Line 58: Line 58:
 
----
 
----
 
[[File:3-D graphing.png]]
 
[[File:3-D graphing.png]]
*On the bottom is a 3/4 in common birch plywood.We then stick a 12 * 12, 0.063 in thick aluminum platform to the top of wooden cylinder.
+
*On the bottom is a 3/4 in common birch plywood.
  
 
*We are going to use a PVC pipe type of rod to support the plate. The point is that the pipe will be hollow inside, so that those wires can go in. There will be a foam type of material that connected the rode to the exciter, so hopefully it will reduce unnecessary vibration to the rode. Then the exciter will connect to the plate directly.
 
*We are going to use a PVC pipe type of rod to support the plate. The point is that the pipe will be hollow inside, so that those wires can go in. There will be a foam type of material that connected the rode to the exciter, so hopefully it will reduce unnecessary vibration to the rode. Then the exciter will connect to the plate directly.

Revision as of 23:46, 7 October 2016

Overview


This project is inspired by Cymatics, the study of visualizing sound through the representation of physical mediums. The common method to visualize sound in Cymatics is by creating a frequency on a plate that vibrates a medium (such as sand or water) placed on top. The more in tune a frequency is to the plate, the more complex of a geometric shape (nodal lines) the sand creates. We initially plan on experimenting with an online frequency generator and a metal plate in order to see different kinds of standing waves we can form. Once we have found specific frequencies that resonate well with the plate, we will choose one frequency and convert it into a tone playable through a button all through the works of an Arduino. If this is successful, we will add more buttons with varying tones so that people can play around, creating their own beats in order to “see” what physical form their music takes on.

The Team

  • Sudeep Raj
  • Han Wang
  • Li Gao

Objectives


  • Finding several resonating frequencies of the plate since stable figures are obtained the best at these frequencies
  • Achieving a consistent image will depend on the distribution of sand (or silica grains) spread on the plate since the higher density nodes will be providing the form we seek.
  • Having at the least 1 diametric and radial node pattern that is playable on the Arduino button.
    • The higher the count on both diametric and radial nodes, the better
  • (Only if the former is successful) During the demo, anyone should be able to play with the buttons and form images on their own (although we will prepare/practice some melodies)

Challenges


Most of the hardware we will use can be purchased, but there are still many foreseen challenges we will encounter:

  • We need to experiment with the platform and find a way to make it vibrate the least amount (as the exciter will be attached to both the platform and plate)
  • We don’t know the resonant frequencies of our specific plate are, so we will have to find them using a range of frequencies from 20Hz to 2kHz (range is considered in order to stay safe and based on an article that ran a similar experiment)
  • Preventing damage to exciter/amp (clipping, overheating, etc)
  • We may exceed our budget if our trials keep failing, so we need to form detailed plans on how we will run our experiments in order to prevent going over our budget
  • Finding the most effective way to reuse and not waste our sand
  • Assembling all our equipment in a neat and organized way for demo

Budget


Owned

Est. Total

  • ~$140 ( including amp stuff/ arduino stuff/ sand/ plate)

Schematics and Sketches


3-D graphing.png

  • On the bottom is a 3/4 in common birch plywood.
  • We are going to use a PVC pipe type of rod to support the plate. The point is that the pipe will be hollow inside, so that those wires can go in. There will be a foam type of material that connected the rode to the exciter, so hopefully it will reduce unnecessary vibration to the rode. Then the exciter will connect to the plate directly.
  • As for the materials of our plate, there are several materials listed on the article we found that has been proved to work well with our exciter, including aluminum. However, the frequency range that is produced is influenced by different factors(i.e. different material and exciter pairing). So there is not too much data we can refer to, but we will have to do experiments and figure out by ourselves.
  • Now we are just going to use some newspaper to collect the sand that drops out of the plate. As the project proceed, when we finish our experiments, we are going to design how we should collect the sand.

Theory/Resources/Misc


The choices for the items under our budget are not arbitrary:

  • The amplifier and subwoofer were chosen based on an article found on in the American Journal of Physics (AAPT). The article conducted an identical experiment and recommended using an amplifier that outputs at least 15 Watts and thus a sub that can handle such power
  • We concluded with a thickness of 0.063 for the Aluminum Sheet as as it satisfies the 6 assumptions presented in Kirchoff’s Plate Theory

Reproducibility of different shapes do not rely on the assembly of the setup:

  • The only two factors needed to reproduce a shape found is by using the same frequency and the arbitrary boundary conditions created (Noted from Jensen's Article (Page 505))
    • We will not be experimenting with different boundary conditions and will only be using the center of the plate as the point of excitation (unfortunately, this will reduce the chances of us finding complex symmetrical patterns, but will not restrict us too far);Also, placing our exciter at the center of the plate will buildup the standing waves on the plate, so that the desired sand patterns will be more obvious.

3D/2D Graphing Using Mathematica:

Gantt Chart


GanttChart2.0VB.png