Difference between revisions of "BOARDLOCK project"

From ESE205 Wiki
Jump to navigation Jump to search
Line 39: Line 39:
  
 
===New Skills:===
 
===New Skills:===
*Programming in python:
+
*Programming in python
  
 
*Using raspberry pi
 
*Using raspberry pi

Revision as of 01:37, 11 December 2018


Project Overview

Tired of your run-of-the-mill skateboard? Looking to upgrade it to the next level? We present to you BOARDTRACK: a slick skateboard equipped with a battery-powered Raspberry Pi, GPS chip, and accelerometer attached to its underside. Why? We're glad you asked... these small gadgets provide BOARDTRACK with the the capacity for user-friendly tracking of its location, acceleration, and average speed. Once collected, this data is displayed onto a monitor. But wait, there's more -- each display is unique to every trip, enabling you to access how far you have traveled, your speed at any location, and the highest overall acceleration reached. In this project, our team aims to manufacture a unique transportation method of utmost quality, aesthetics, and convenience.

Weekly Log

https://classes.engineering.wustl.edu/ese205/core/index.php?title=BOARDLOCK

Team Members

  • Amin Bdeir
  • Isabella Zisman
  • TA: Sam Hoff

Objectives

Old Objectives:

  1. Attach ESC to Raspberry pi
  2. Be able to lock board's wheels
  3. Use raspberry pi bluetooth capabilities to lock board wheel from cellphone

New Objectives:

  1. Attach a 3D-printed box to the underside of our Skateboard's deck, containing a portable battery-powered Raspberry Pi, GPS Chip, Accelerometer, and a LED pushbutton
  2. Set up Raspberry Pi
  3. Learning how the Raspberry pi and Python works
  4. Understand how GPS technology works
  5. Get GPS and Accelerometer to send data to Raspberry pi
  6. Program button so that we can begin and end pi program
  7. Program a Python Script which displays a heat map of route traveled

Challenges

We anticipated our challenges to mainly be using unfamiliar technology to all group members, including programming in python, the raspberry pi, accelerometer and GPS. In addition to these being new to us, we knew that we also were going to have trouble testing the GPS, especially if we were inside. The GPS specifically caused the most trouble, and was hardest thing to deal with in our project.

New Skills:

  • Programming in python
  • Using raspberry pi

Gantt Chart

https://classes.engineering.wustl.edu/ese205/core/images/7/7d/Ganttchartt.pdf

Presentation Slides

https://docs.google.com/presentation/d/1R9UPc2ogxPKON9jxLcB9qWECYStB06nGXCuJ_GoqvfU/edit?usp=sharing

Night Light design

https://drive.google.com/open?id=14BxDPPlyi2YZkdFCk_n2jNiYaWCCQbUU

Budget

Anker PowerCore 10000 $25.49

Adafruit 16mm Illuminated Pushbutton - Blue Momentary [ADA1477] $6.09

SunFounder MPU6050 Module for Arduino and Raspberry Pi, 3-axis Gyroscope and 3-axis Accelerator $11.99

Adafruit Ultimate GPS Breakout - 66 channel w/10 Hz updates - Version 3 $39.99

Raspberry pi 3B

Total: $83.56

Final Report

Designs and Solutions

Programming:

How to project GPS data onto Google Maps API? Hyperlink created

How to project Accelerometer data onto graph? X, Y, Z coordinates

How to program button to start/stop collecting data? LED light

How to extract data? Stored on USB flash drive


Wiring Connections:

F-F Configuration / Pins

Battery → Pi → button → GPS chip → Accelerometer → USB → monitor


Virtually every aspect of this project was learned from scratch...

How to:

  • Parse/interpret/project data from GPS chip and Accelerometer
  • Based on data collection, program button to respond accordingly


Results

On Demo Day, our team successfully met our goals, though not to the extent we originally envisioned.


Source Code and CAD files

3-D printed box:

Repository: