distanceCalculator.py
# distanceCalculator.py
# ---------------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
This file contains a Distancer object which computes and
caches the shortest path between any two points in the maze. It
returns a Manhattan distance between two points if the maze distance
has not yet been calculated.
Example:
distancer = Distancer(gameState.data.layout)
distancer.getDistance( (1,1), (10,10) )
The Distancer object also serves as an example of sharing data
safely among agents via a global dictionary (distanceMap),
and performing asynchronous computation via threads. These
examples may help you in designing your own objects, but you
shouldn't need to modify the Distancer code in order to use its
distances.
"""
import threading, sys, time, random
class Distancer:
def __init__(self, layout, background=True, default=10000):
"""
Initialize with Distancer(layout). Changing default is unnecessary.
This will start computing maze distances in the background and use them
as soon as they are ready. In the meantime, it returns manhattan distance.
To compute all maze distances on initialization, set background=False
"""
self._distances = None
self.default = default
# Start computing distances in the background; when the dc finishes,
# it will fill in self._distances for us.
dc = DistanceCalculator()
dc.setAttr(layout, self)
dc.setDaemon(True)
if background:
dc.start()
else:
dc.run()
def getDistance(self, pos1, pos2):
"""
The getDistance function is the only one you'll need after you create the object.
"""
if self._distances == None:
return manhattanDistance(pos1, pos2)
if isInt(pos1) and isInt(pos2):
return self.getDistanceOnGrid(pos1, pos2)
pos1Grids = getGrids2D(pos1)
pos2Grids = getGrids2D(pos2)
bestDistance = self.default
for pos1Snap, snap1Distance in pos1Grids:
for pos2Snap, snap2Distance in pos2Grids:
gridDistance = self.getDistanceOnGrid(pos1Snap, pos2Snap)
distance = gridDistance + snap1Distance + snap2Distance
if bestDistance > distance:
bestDistance = distance
return bestDistance
def getDistanceOnGrid(self, pos1, pos2):
key = (pos1, pos2)
if key in self._distances:
return self._distances[key]
else:
raise Exception("Positions not in grid: " + str(key))
def isReadyForMazeDistance(self):
return self._distances != None
def manhattanDistance(x, y ):
return abs( x[0] - y[0] ) + abs( x[1] - y[1] )
def isInt(pos):
x, y = pos
return x == int(x) and y == int(y)
def getGrids2D(pos):
grids = []
for x, xDistance in getGrids1D(pos[0]):
for y, yDistance in getGrids1D(pos[1]):
grids.append(((x, y), xDistance + yDistance))
return grids
def getGrids1D(x):
intX = int(x)
if x == int(x):
return [(x, 0)]
return [(intX, x-intX), (intX+1, intX+1-x)]
##########################################
# MACHINERY FOR COMPUTING MAZE DISTANCES #
##########################################
distanceMap = {}
distanceMapSemaphore = threading.Semaphore(1)
distanceThread = None
def waitOnDistanceCalculator(t):
global distanceThread
if distanceThread != None:
time.sleep(t)
class DistanceCalculator(threading.Thread):
def setAttr(self, layout, distancer, default = 10000):
self.layout = layout
self.distancer = distancer
self.default = default
def run(self):
global distanceMap, distanceThread
distanceMapSemaphore.acquire()
if self.layout.walls not in distanceMap:
if distanceThread != None: raise Exception('Multiple distance threads')
distanceThread = self
distances = computeDistances(self.layout)
print >>sys.stdout, '[Distancer]: Switching to maze distances'
distanceMap[self.layout.walls] = distances
distanceThread = None
else:
distances = distanceMap[self.layout.walls]
distanceMapSemaphore.release()
self.distancer._distances = distances
def computeDistances(layout):
distances = {}
allNodes = layout.walls.asList(False)
for source in allNodes:
dist = {}
closed = {}
for node in allNodes:
dist[node] = sys.maxint
import util
queue = util.PriorityQueue()
queue.push(source, 0)
dist[source] = 0
while not queue.isEmpty():
node = queue.pop()
if node in closed:
continue
closed[node] = True
nodeDist = dist[node]
adjacent = []
x, y = node
if not layout.isWall((x,y+1)):
adjacent.append((x,y+1))
if not layout.isWall((x,y-1)):
adjacent.append((x,y-1) )
if not layout.isWall((x+1,y)):
adjacent.append((x+1,y) )
if not layout.isWall((x-1,y)):
adjacent.append((x-1,y))
for other in adjacent:
if not other in dist:
continue
oldDist = dist[other]
newDist = nodeDist+1
if newDist < oldDist:
dist[other] = newDist
queue.push(other, newDist)
for target in allNodes:
distances[(target, source)] = dist[target]
return distances
def getDistanceOnGrid(distances, pos1, pos2):
key = (pos1, pos2)
if key in distances:
return distances[key]
return 100000