3.7.2 Impedance boundary conditions

Products: ABAQUS/Standard  ABAQUS/Explicit  

I. Element-based and surface-based conditions

Elements tested

AC1D2    AC1D3   

AC2D3    AC2D4    AC2D4R    AC2D6    AC2D8   

AC3D4    AC3D6    AC3D8    AC3D8R    AC3D10    AC3D15    AC3D20   

ACAX3    ACAX4    ACAX4R    ACAX6    ACAX8   

Feature tested

Acoustic surface impedances on acoustic elements.

Problem description

The impedance boundary conditions are tested in this verification set. The model consists of a column of fluid 10 meters high with a cross-sectional area of 1 m. The first-order element models consist of 20 acoustic elements: 20 high and one in the cross-section. The second-order element models consist of 10 elements along the height direction.

One end of the column has a surface impedance imposed on it that is set equal to the characteristic impedance of the fluid column, , where is the density of the fluid and is the speed of sound in the fluid. To simulate a nonreflecting boundary condition, and 0 are set with the *IMPEDANCE option. The material used in these tests is air with the following properties: density, 1.293 kg/m3; bulk modulus, 1.42176 × 105 N/m2; and 2.3323 × 10–3 m2s/kg.

The other end of the column is excited by a harmonic pressure impulse of magnitude 1.0 N/m2. A steady-state dynamic analysis is performed in ABAQUS/Standard over a range of frequencies from 0 to 100 Hz. Transient simulations are also performed in ABAQUS/Explicit using an excitation frequency of 100 Hz. Different excitation frequencies can be tested by changing the parameters defined in the input files. The solution should represent a steady-state unattenuated wave moving in the positive y-direction. No resonating frequencies should result; the maximum pressure throughout the column should consistently remain at a magnitude of 1.0 N/m2, and the phase should drop by 2 radians over the distance of a wavelength, , where f is the excitation frequency in cycles per time.

Results and discussion

With the meshes used in these tests, the results lie within 8% of the analytical solution for the first-order models and within 2% of the analytical solution for the second-order models. Finer meshes yield more accurate results.

Input files

ABAQUS/Standard input files

ec12afar.inp

AC1D2 elements.

ec13afar.inp

AC1D3 elements.

ec23afar.inp

AC2D3 elements.

ec24afar.inp

AC2D4 elements.

ec26afar.inp

AC2D6 elements.

ec28afar.inp

AC2D8 elements.

ec34afar.inp

AC3D4 elements.

ec36afar.inp

AC3D6 elements.

ec38afar.inp

AC3D8 elements.

ec3aafar.inp

AC3D10 elements.

ec3fafar.inp

AC3D15 elements.

ec3kafar.inp

AC3D20 elements.

eca3afar.inp

ACAX3 elements.

eca4afar.inp

ACAX4 elements.

eca6afar.inp

ACAX6 elements.

eca8afar.inp

ACAX8 elements.

ABAQUS/Explicit input files

eca3afar_trans_xpl.inp

ACAX3 elements.

eca4arar_trans_xpl.inp

ACAX4R elements.

ec23afar_trans_xpl.inp

AC2D3 elements.

ec24arar_trans_xpl.inp

AC2D4R elements.

ec34afar_trans_xpl.inp

AC3D4 elements.

ec36afar_trans_xpl.inp

AC3D6 elements.

ec38arar_trans_xpl.inp

AC3D8R elements.

II. Nonreflective boundaries

Elements tested

AC1D2    AC1D3   

AC2D3    AC2D4    AC2D6    AC2D8   

AC3D4    AC3D6    AC3D8    AC3D10    AC3D15    AC3D20   

Feature tested

Nonreflective boundaries on each of the acoustic elements, using the nonreflective default condition of both the *IMPEDANCE and *SIMPEDANCE options for steady-state dynamic analyses in ABAQUS/Standard. All elements are tested using the *STEADY STATE DYNAMICS, DIRECT prodecure; the AC2D4, AC2D8, and AC3D8 elements are also tested using the *STEADY STATE DYNAMICS, SUBSPACE PROJECTION procedure.

Problem description

These tests model a sound source at 0 m in a tube with significant volumetric drag (air properties with 1400 Ns/m4) and a nonreflective end condition at 0.5 m at a frequency of 100 Hz. In each model the inward acceleration of the sound source is specified as the complex value , giving an inward velocity of 1 m/s. (The inward acceleration on a face is distributed to the nodes of the face as *CLOADs representing inward volume accelerations in the same way as pressure on a face would be distributed to the nodes of the face as *CLOADs representing nodal forces.) Because of the large drag, for good results at this frequency the constants and must both be nonzero and must be based on the complex impedance of the medium.

Results and discussion

The results are within 1% of the analytical results, which are given as comments in the input files. The analytical result for the high-drag tests predicts exponential decay of pressure magnitude and linear dependence of pressure phase.

Input files

ec12afaw.inp

AC1D2 elements.

ec13afaw.inp

AC1D3 elements.

ec23afaw.inp

AC2D3 elements.

ec24afaw.inp

AC2D4 elements.

ec26afaw.inp

AC2D6 elements.

ec28afaw.inp

AC2D8 elements.

ec34afaw.inp

AC3D4 elements.

ec36afaw.inp

AC3D6 elements.

ec38afaw.inp

AC3D8 elements.

ec3aafaw.inp

AC3D10 elements.

ec3fafaw.inp

AC3D15 elements.

ec3kafaw.inp

AC3D20 elements.

III. Improved planar boundary condition

Elements tested

AC3D8    AC3D4    AC3D6   

AC2D4    AC2D3   

AC3D8R    AC2D4R   

Features tested

Nonreflective boundaries on each of the acoustic elements, using the nonreflective default condition of *SIMPEDANCE with the IMPROVED PLANE parameter for transient dynamic analyses in ABAQUS/Standard and ABAQUS/Explicit. All elements are tested using either the *DYNAMIC procedure in ABAQUS/Standard or the *DYNAMIC, EXPLICIT procedure in ABAQUS/Explicit.

Problem description

These tests model one-dimensional propagation of sound in situations where the acoustic waves exit the acoustic domain through oblique boundaries. Various elementary geometric shapes are tested. In all models sinusoidal acoustic pressure boundary conditions are applied on one face of the acoustic domain using either the *CLOAD or the *BOUNDARY option, in such a way as to result in one-dimensional acoustic wave propagation in the model. The models are created so as to force the acoustic waves to exit from the model via surfaces that possess either continuously varying normals or normals that are not oriented in the same direction as the propagation of the waves. On the exit surface the *SIMPEDANCE, IMPROVED PLANE option is used. The objective in all the models tested is to ensure that the problem remains one-dimensional and that there is no reflection of the acoustic waves back into the domain from the oblique boundary.

Results and discussion

By studying the contour plots of the acoustic pressure (POR), it can be seen that the acoustic waves retain their directionality (one-dimensional and normal to the loading surface) even in the regions adjacent to the oblique boundary. For example, Figure 3.7.2–1 shows the contours of acoustic pressure in the case of a wedge-shaped model (brick45.inp) at the end of the analysis. As can be seen, the acoustic waves exit the boundary of the domain in exactly the same manner as they would if the boundary were normal to the outgoing plane waves.

Figure 3.7.2–1 Acoustic pressure contours illustrating the effect of using the *SIMPEDANCE, IMPROVED PLANE option to simulate a nonreflective boundary condition on an oblique surface.

Input files

ABAQUS/Standard input files

brick45.inp

AC3D8 elements, oblique planar boundary.

bricksphere.inp

AC3D8 elements, spherical boundary.

quad45.inp

AC2D4 elements, oblique planar boundary.

quadcirc.inp

AC2D4 elements, circular boundary.

tet45.inp

AC3D4 elements, oblique planar boundary.

tetsphere.inp

AC3D4 elements, spherical boundary.

tri45.inp

AC2D3 elements, oblique planar boundary.

triacirc.inp

AC2D3 elements, circular boundary.

wed45.inp

AC3D6 elements, oblique planar boundary.

ABAQUS/Explicit input files

brick45_xpl.inp

AC3D8 elements, oblique planar boundary.

bricksphere_xpl.inp

AC3D8 elements, spherical boundary.

quad45_xpl.inp

AC2D4 elements, oblique planar boundary.

quadcirc_xpl.inp

AC2D4 elements, circular boundary.

tet45_xpl.inp

AC3D4 elements, oblique planar boundary.

tetsphere_xpl.inp

AC3D4 elements, spherical boundary.

tri45_xpl.inp

AC2D3 elements, oblique planar boundary.

triacirc_xpl.inp

AC2D3 elements, circular boundary.

wed45_xpl.inp

AC3D6 elements, oblique planar boundary.

IV. Acoustic interface elements

Elements tested

ASI1    ASI2    ASI3   

ASI2A    ASI3A   

ASI4    ASI8   

AC1D2    AC1D3   

AC2D4    AC2D8   

ACAX4    ACAX8   

AC3D8    AC3D20   

Feature tested

Acoustic interface elements in ABAQUS/Standard.

Problem description

For the ASI element tests the physical problem is similar to the nonreflective boundary test. Here, however, there is no volumetric drag, and a portion of the length of the body of air in the tube is modeled with truss elements. These are given Young's modulus and density to match the bulk modulus, 1.424 × 105 N/m2, and density, 1.21 kg/m3, of air. The rest of the tube is modeled with acoustic elements that have the properties of air. Acoustic-structural coupling is set up between the structural region and the acoustic region using ASI elements, and a nonreflective end condition is applied.

This problem is analyzed for the one-dimensional case using ASI1 elements, for the two-dimensional case using ASI2 and ASI3 elements, for the axisymmetric case using ASI2A and ASI3A elements, and for the three-dimensional case using ASI4 and ASI8 elements. All the nodes in these models are constrained such that they have only the horizontal translation degree of freedom to simulate one-dimensional wave propagation.

Results and discussion

The results are within 1% of the analytical results, which are given as comments in the input files.

Input files

ec12afai.inp

ASI1/AC1D2 elements.

ec13afai.inp

ASI1/AC1D3 elements.

ec22afai.inp

ASI2/AC2D4 elements.

ec23afai.inp

ASI3/AC2D8 elements.

eca2afai.inp

ASI2A/ACAX4 elements.

eca3afai.inp

ASI3A/ACAX8 elements.

ec34afai.inp

ASI4/AC3D8 elements.

ec38afai.inp

ASI8/AC3D20 elements.

V. Impedance conditions on the semi-infinite sides of acoustic infinite elements

Elements tested

ACIN2D2    ACIN2D3   

ACIN3D3    ACIN3D4    ACIN3D6    ACIN3D8   

ACINAX2    ACINAX3   

Feature tested

Tabular impedance properties on each of the acoustic infinite elements for transient and steady-state dynamic analyses in ABAQUS/Standard.

Problem description

These tests compare the behavior of acoustic infinite elements with and without impedance conditions defined on the semi-infinite sides. In all models the acoustic infinite elements are coupled directly to structural elements using steel material properties. The acoustic infinite elements use air properties and an impedance condition on one semi-infinite side with a tabular value corresponding to one-half the material impedance. In the steady-state dynamic analyses the frequency is varied from 1 to 200 Hz. In the transient dynamic analyses the elements are excited using a sinusoidal amplitude with an angular frequency of 5.

Results and discussion

The reductions in pressure amplitude due to the presence of the impedance condition on the acoustic infinite element sides are apparent in contour plots of the acoustic pressure.

Input files

ABAQUS/Standard input files

ec2dafar_acin.inp

ACIN2D2 and ACIN2D3 elements, semi-infinite side impedance.

ec2dafas_acin.inp

ACIN2D2 and ACIN2D3 elements, semi-infinite side impedance.

ec3dafar_acin.inp

ACIN3D3, ACIN3D4, ACIN3D6, and ACIN3D8 elements, semi-infinite side impedance.

ec3dafas_acin.inp

ACIN3D3, ACIN3D4, ACIN3D6, and ACIN3D8 elements, semi-infinite side impedance.

ecaxafar_acin.inp

ACINAX2 and ACINAX3 elements, semi-infinite side impedance.

ecaxafas_acin.inp

ACINAX2 and ACINAX3 elements, semi-infinite side impedance.

ABAQUS/Explicit input files

ec2dafas_acin_xpl.inp

ACIN2D2 elements, semi-infinite side impedance.

ec3dafas_acin_xpl.inp

ACIN3D3 and ACIN3D4 elements, semi-infinite side impedance.

ecaxafas_acin_xpl.inp

ACINAX4 elements, semi-infinite side impedance.