3.6.11 Coupled temperature-displacement submodeling

Products: ABAQUS/Standard  ABAQUS/Explicit  

Elements tested

C3D8HT    C3D8RHT    C3D8RT    C3D4T    C3D6T    C3D8T    C3D20HT    C3D20RHT    C3D20RT    C3D20T   

CAX4HT    CAX4RHT    CAX3T    CAX4T    CAX4T    CAX6MHT    CAX6MT    CAX8HT    CAX8RHT    CAX4RT    CAX8RT    CAX8T   

CGAX3HT    CGAX3T    CGAX4HT    CGAX4RHT    CGAX4RT    CGAX4T    CGAX6MHT    CGAX6MT    CGAX8HT    CGAX8RHT    CGAX8RT    CGAX8T   

CPE4HT    CPE4RHT    CPE4T    CPE6MHT    CPE6MT    CPE8HT    CPE8RHT    CPE8RT    CPE3T    CPE4RT    CPE8T   

CPEG3T    CPEG4RHT    CPEG4RT    CPEG4T    CPEG6MHT    CPEG6MT    CPEG8T   

CPS4RT    CPS3T    CPS4T    CPS6MT    CPS8RT    CPS8T   

Features tested

The submodeling capability is applied to two-dimensional, three-dimensional, and axisymmetric continuum coupled temperature-displacement elements. General steps invoking the steady-state coupled temperature-displacement and the dynamic temperature-displacement procedures are used in ABAQUS/Standard and ABAQUS/Explicit, respectively, for both the global and submodel analyses.

Problem description

Model:

All global models have dimensions 7.0 × 7.0 in the xy or rz plane. Each submodel has dimensions 5.0 × 5.0 in the xy or rz plane and occupies the lower right-hand corner of the corresponding global model. In all but the axisymmetric models, the out-of-plane dimension is 1.0. In axisymmetric models the structure analyzed is a hollow cylinder with an outer radius of 8.0.

Material:

In ABAQUS/Standard:


Young's modulus30 × 106
Poisson's ratio0.3
Coeff. of thermal expansion1 × 10–5
Thermal conductivity3.77 × 10–5
Specific heat0.39
Density82.9

In ABAQUS/Explicit:


Young's modulus110 × 109
Poisson's ratio0.3
Coeff. of thermal expansion1 × 10–3
Thermal conductivity390
Specific heat384
Density8900

Loading:

In all ABAQUS/Standard models a distributed flux of magnitude 0.3 is applied to the right face; in ABAQUS/Explicit the flux magnitude is 0.5× 104.

Boundary and initial conditions:

In the global model fixed boundary conditions =0 and =0 are prescribed on the left and bottom faces, respectively. In three-dimensional models the additional constraints =0 are applied to the nodes on the front and back faces. The initial temperature is zero everywhere, and fixed temperature boundary conditions are applied on the left face. In the submodel =0 is prescribed everywhere on the bottom face, while degrees of freedom 1, 2, and 11 for the nodes on the top and left faces are being driven by the global solution. The mass scaling technique is used in the ABAQUS/Explicit models to speed-up the analysis.

Results and discussion

In the global analyses the temperature field predicted by ABAQUS varies linearly in the x-direction in nonaxisymmetric models and logarithmically in the r-direction in axisymmetric models. The predicted displacement field is nonuniform in all models. The ABAQUS/Standard results depicted for the temperature and x- or r-displacement contour plots are shown below. For comparison purposes the temperature and displacement solutions predicted by the submodels are also presented in the same contour plots, and excellent agreement between the global and submodel results is obtained. Hence, the amplitudes of all driven variables in the submodel analysis are identified correctly in the global analysis file output and applied at the driven nodes in the submodel analysis.

Global and submodel analyses results for 4-node plane stress elements in ABAQUS/Standard are shown in Figure 3.6.11–1 and Figure 3.6.11–2.

Global and submodel ABAQUS/Standard analyses results for 8-node plane strain elements are shown in Figure 3.6.11–3 and Figure 3.6.11–4.

Global and submodel ABAQUS/Standard analyses results for 8-node axisymmetric elements are shown in Figure 3.6.11–5 and Figure 3.6.11–6.

Global and submodel ABAQUS/Standard analyses results for 20-node brick elements (front face) are shown in Figure 3.6.11–7 and Figure 3.6.11–8.

In ABAQUS/Explicit the driven temperatures and displacements in the submodel are correctly interpolated from the global analysis file output. Each of the two-dimensional, three-dimensional, or axisymmetric submodels can be driven from any global model that has the same dimensionality. The results between the global model and submodel agree extremely well.

Input files

ABAQUS/Standard input files

The following input files test the steady-state *COUPLED TEMPERATURE-DISPLACEMENT procedure:

pgc38ths.inp

C3D8HT elements; global analysis.

psc38ths.inp

C3D8HT elements; submodel analysis.

pgc38tys.inp

C3D8RHT elements; global analysis.

psc38tys.inp

C3D8RHT elements; submodel analysis.

pgc38trs.inp

C3D8RT elements; global analysis.

psc38trs.inp

C3D8RT elements; submodel analysis.

pgc38tfs.inp

C3D8T elements; global analysis.

psc38tfs.inp

C3D8T elements; submodel analysis.

pgc3kths.inp

C3D20HT elements; global analysis.

psc3kths.inp

C3D20HT elements; submodel analysis.

pgc3ktys.inp

C3D20RHT elements; global analysis.

psc3ktys.inp

C3D20RHT elements; submodel analysis.

pgc3ktrs.inp

C3D20RT elements; global analysis.

psc3ktrs.inp

C3D20RT elements; submodel analysis.

pgc3ktfs.inp

C3D20T elements; global analysis.

psc3ktfs.inp

C3D20T elements; submodel analysis.

pgca4ths.inp

CAX4HT elements; global analysis.

psca4ths.inp

CAX4HT elements; submodel analysis.

pgca4tys.inp

CAX4RHT elements; global analysis.

psca4tys.inp

CAX4RHT elements; submodel analysis.

pgca4trs.inp

CAX4RT elements; global analysis.

psca4trs.inp

CAX4RT elements; submodel analysis.

pgca4tfs.inp

CAX4T elements; global analysis.

psca4tfs.inp

CAX4T elements; submodel analysis.

pgca6ths.inp

CAX6MHT elements; global analysis.

psca6ths.inp

CAX6MHT elements; submodel analysis.

pgca6tfs.inp

CAX6MT elements; global analysis.

psca6tfs.inp

CAX6MT elements; submodel analysis.

pgca8ths.inp

CAX8HT elements; global analysis.

psca8ths.inp

CAX8HT elements; submodel analysis.

pgca8tys.inp

CAX8RHT elements; global analysis.

psca8tys.inp

CAX8RHT elements; submodel analysis.

pgca8trs.inp

CAX8RT elements; global analysis.

psca8trs.inp

CAX8RT elements; submodel analysis.

pgca8tfs.inp

CAX8T elements; global analysis.

psca8tfs.inp

CAX8T elements; submodel analysis.

pgca3hhs.inp

CGAX3HT elements; global analysis.

psca3hhs.inp

CGAX3HT elements; submodel analysis.

pgca3hfs.inp

CGAX3T elements; global analysis.

psca3hfs.inp

CGAX3T elements; submodel analysis.

pgca4hhs.inp

CGAX4HT elements; global analysis.

psca4hhs.inp

CGAX4HT elements; submodel analysis.

pgca4hys.inp

CGAX4RHT elements; global analysis.

psca4hys.inp

CGAX4RHT elements; submodel analysis.

pgca4hrs.inp

CGAX4RT elements; global analysis.

psca4hrs.inp

CGAX4RT elements; submodel analysis.

pgca4hfs.inp

CGAX4T elements; global analysis.

psca4hfs.inp

CGAX4T elements; submodel analysis.

pgca6hhs.inp

CGAX6MHT elements; global analysis.

psca6hhs.inp

CGAX6MHT elements; submodel analysis.

pgca6hfs.inp

CGAX6MT elements; global analysis.

psca6hfs.inp

CGAX6MT elements; submodel analysis.

pgca8hhs.inp

CGAX8HT elements; global analysis.

psca8hhs.inp

CGAX8HT elements; submodel analysis.

pgca8hys.inp

CGAX8RHT elements; global analysis.

psca8hys.inp

CGAX8RHT elements; submodel analysis.

pgca8hrs.inp

CGAX8RT elements; global analysis.

psca8hrs.inp

CGAX8RT elements; submodel analysis.

pgca8hfs.inp

CGAX8T elements; global analysis.

psca8hfs.inp

CGAX8T elements; submodel analysis.

pgce4ths.inp

CPE4HT elements; global analysis.

psce4ths.inp

CPE4HT elements; submodel analysis.

pgce4tys.inp

CPE4RHT elements; global analysis.

psce4tys.inp

CPE4RHT elements; submodel analysis.

pgce4trs.inp

CPE4RT elements; global analysis.

psce4trs.inp

CPE4RT elements; submodel analysis.

pgce4tfs.inp

CPE4T elements; global analysis.

psce4tfs.inp

CPE4T elements; submodel analysis.

pgce4tfsg.inp

CPE4T elements; *SUBMODEL, GLOBAL ELSET; global analysis.

psce4tfsg.inp

CPE4T elements; *SUBMODEL, GLOBAL ELSET; submodel analysis.

pgce6ths.inp

CPE6MHT elements; global analysis.

psce6ths.inp

CPE6MHT elements; submodel analysis.

pgce6tfs.inp

CPE6MT elements; global analysis.

psce6tfs.inp

CPE6MT elements; submodel analysis.

pgce8ths.inp

CPE8HT elements; global analysis.

psce8ths.inp

CPE8HT elements; submodel analysis.

pgce8tys.inp

CPE8RHT elements; global analysis.

psce8tys.inp

CPE8RHT elements; submodel analysis.

pgce8trs.inp

CPE8RT elements; global analysis.

psce8trs.inp

CPE8RT elements; submodel analysis.

pgce8tfs.inp

CPE8T elements; global analysis.

psce8tfs.inp

CPE8T elements; submodel analysis.

pgcg3tfs.inp

CPEG3T elements; global analysis.

pscg3tfs.inp

CPEG3T elements; submodel analysis.

pgcg4tys.inp

CPEG4RHT elements; global analysis.

pscg4tys.inp

CPEG4RHT elements; submodel analysis.

pgcg4trs.inp

CPEG4RT elements; global analysis.

pscg4trs.inp

CPEG4RT elements; submodel analysis.

pgcg4tfs.inp

CPEG4T elements; global analysis.

pscg4tfs.inp

CPEG4T elements; submodel analysis.

pgcg4tfsg.inp

CPEG4T elements; *SUBMODEL, GLOBAL ELSET; global analysis.

pscg4tfsg.inp

CPEG4T elements; *SUBMODEL, GLOBAL ELSET; submodel analysis.

pgcg6ths.inp

CPEG6MHT elements; global analysis.

pscg6ths.inp

CPEG6MHT elements; submodel analysis.

pgcg6tfs.inp

CPEG6MT elements; global analysis.

pscg6tfs.inp

CPEG6MT elements; submodel analysis.

pgcg8tfs.inp

CPEG8T elements; global analysis.

pscg8tfs.inp

CPEG8T elements; submodel analysis.

pgcs4trs.inp

CPS4RT elements; global analysis.

pscs4trs.inp

CPS4RT elements; submodel analysis.

pgcs4tfs.inp

CPS4T elements; global analysis.

pscs4tfs.inp

CPS4T elements; submodel analysis.

pgcs6tfs.inp

CPS6MT elements; global analysis.

pscs6tfs.inp

CPS6MT elements; submodel analysis.

pgcs8trs.inp

CPS8RT elements; global analysis.

pscs8trs.inp

CPS8RT elements; submodel analysis.

pgcs8tfs.inp

CPS8T elements; global analysis.

pscs8tfs.inp

CPS8T elements; submodel analysis.

ABAQUS/Explicit input files

submcoupledtmp_g_c3d4t_xpl.inp

C3D4T elements; global analysis.

submcoupledtmp_s_c3d4t_xpl.inp

C3D4T elements; submodel analysis.

submcoupledtmp_g_c3d6t_xpl.inp

C3D6T elements; global analysis.

submcoupledtmp_s_c3d6t_xpl.inp

C3D6T elements; submodel analysis.

submcoupledtmp_g_c3d8rt_xpl.inp

C3D8RT elements; global analysis.

submcoupledtmp_s_c3d8rt_xpl.inp

C3D8RT elements; submodel analysis.

submcoupledtmp_g_cax3t_xpl.inp

CAX3T elements; global analysis.

submcoupledtmp_s_cax3t_xpl.inp

CAX3T elements; submodel analysis.

submcoupledtmp_g_cax4rt_xpl.inp

CAX4RT elements; global analysis.

submcoupledtmp_s_cax4rt_xpl.inp

CAX4RT elements; submodel analysis.

submcoupledtmp_g_cax6mt_xpl.inp

CAX6MT elements; global analysis.

submcoupledtmp_s_cax6mt_xpl.inp

CAX6MT elements; submodel analysis.

submcoupledtmp_g_cpe3t_xpl.inp

CPE3T elements; global analysis.

submcoupledtmp_s_cpe3t_xpl.inp

CPE3T elements; submodel analysis.

submcoupledtmp_g_cpe4rt_xpl.inp

CPE4RT elements; global analysis.

submcoupledtmp_s_cpe4rt_xpl.inp

CPE4RT elements; submodel analysis.

submcoupledtmp_g_cpe6mt_xpl.inp

CPE6MT elements; global analysis.

submcoupledtmp_s_cpe6mt_xpl.inp

CPE6MT elements; submodel analysis.

submcoupledtmp_g_cps3t_xpl.inp

CPS3T elements; global analysis.

submcoupledtmp_s_cps3t_xpl.inp

CPS3T elements; submodel analysis.

submcoupledtmp_g_cps4rt_xpl.inp

CPS4RT elements; global analysis.

submcoupledtmp_s_cps4rt_xpl.inp

CPS4RT elements; submodel analysis.

submcoupledtmp_g_cps6mt_xpl.inp

CPS6MT elements; global analysis.

submcoupledtmp_s_cps6mt_xpl.inp

CPS6MT elements; submodel analysis.

Figures

Figure 3.6.11–1 Temperature contours in global and submodels: 4-node plane stress.

Figure 3.6.11–2 contours in global and submodels: 4-node plane stress.

Figure 3.6.11–3 Temperature contours in global and submodels: 8-node plane strain.

Figure 3.6.11–4 contours in global and submodels: 8-node plane strain.

Figure 3.6.11–5 Temperature contours in global and submodels: 8-node axisymmetric.

Figure 3.6.11–6 contours in global and submodels: 8-node axisymmetric.

Figure 3.6.11–7 Temperature contours in global and submodels: 20-node brick.

Figure 3.6.11–8 contours in global and submodels: 20-node brick.