1.4.6 Eigenvalue analysis of a cantilever plate

Product: ABAQUS/Standard  

This example, using a simple plate problem, provides verification of the linear vibration capability for shell elements. The structure is a cantilever plate, half as wide as it is long, with a width to thickness ratio of 100 to 1. The analysis is done with three different meshes; the finer meshes exercise the eigenvalue routines on relatively large models.

Problem description

Results and discussion

Input files

References

Table

Table 1.4.6–1 Frequencies of the first four modes, in Hertz.

Mode1234
Series Solution84.6363.8526.61187.0
S3R    
2 × 4 (90)91.5539.9653.71811.8
5 × 10 (396)86.8401.1549.81374.9
10 × 20 (1386)85.1367.8532.11210.0
S4    
2 × 4 (90)84.7367.5610.61324.1
5 × 10 (396)84.0361.9535.71198.9
10 × 20 (1386)83.9360.8525.61179.5
S4R    
2 × 4 (90)84.2357.2609.51257.5
5 × 10 (396)83.9360.4535.31189.7
10 × 20 (1386)83.8360.4525.41177.2
S4R5    
2 × 4 (90)84.2356.3609.31251.6
5 × 10 (396)83.9360.4535.31189.6
10 × 20 (1386)83.8360.5525.41177.5
S8R    
2 × 4 (222)83.8361.2525.51183.8
5 × 10 (1086)83.9360.4522.51172.9
10 × 20 (3966)83.8359.7522.21170.9
S8R5    
2 × 4 (270)83.8360.6523.81176.6
5 × 10 (1386)83.8360.6522.41173.7
10 × 20 (5166)83.8360.5522.21173.2
S9R5    
2 × 4 (270)83.8360.6523.81176.6
5 × 10 (1386)83.8360.6522.41173.7
10 × 20 (5166)83.8360.5522.21173.2
STRI3    
2 × 4 (90)81.6298.9473.7928.2
5 × 10 (396)83.5348.2514.11130.0
10 × 20 (1386)83.7357.4520.31163.0
STRI65    
2 × 4 (270)84.1368.1524.01229.1
5 × 10 (1386)83.9360.9521.81175.4
10 × 20 (5166)83.8360.5522.21172.9
The grid size specification is followed by the number of degrees of freedom in the model.


Figures

Figure 1.4.6–1 Cantilever plate.

Figure 1.4.6–2 Mode shapes for vibrating cantilever plate.