
A Performance Model for Memory Bandwidth Constrained
Applications on Graphics Engines

Lin Ma
Roger D. Chamberlain

Lin Ma and Roger D. Chamberlain, “A Performance Model for Memory
Bandwidth Constrained Applications on Graphics Engines,” in Proc. of
23rd IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), July 2012, pp. 24-31.

Dept. of Computer Science and Engineering
Washington University in St. Louis

A Performance Model for Memory Bandwidth Constrained Applications
on Graphics Engines

Lin Ma1 and Roger D. Chamberlain1,2
1Department of Computer Science and Engineering, Washington University in St. Louis

2BECS Technology, Inc., St. Louis, Missouri
{lin.ma, roger}@wustl.edu

Abstract—Graphics engines are excellent execution plat-
forms for high-throughput computations that exploit a large
degree of available parallelism. The achieved performance is,
however, highly dependent on the access patterns that the ap-
plication imposes on the memory subsystem. Here, we propose
an analytic model that helps improve the understanding of the
performance of memory-limited kernels that employ random
memory access schemes, especially as impacted by cache and
various configuration parameters that can be used to tune
kernel execution, such as the number of blocks and the number
of threads per block. The analytic model is first explored
through the use of a synthetic micro-benchmark, which is then
followed by an empirical validation using a pair of production
applications used in computational biology.

Keywords-GPGPU, hashing, BLAST, DNA classification

I. INTRODUCTION

With the introduction of general-purpose capabilities into
graphics engines, many data parallel applications have been
implemented that exploit the unique properties of these
compute resources [10]. Both the CUDA and OpenCL de-
velopment environments support application implementation
using familiar languages, and the available debugging and
performance monitoring tools provide substantial informa-
tion about an application’s correctness and execution speed.

An important issue that remains, however, is a comprehen-
sive understanding of what algorithmic and/or architectural
features have significant impact on the performance of
particular applications. Getting a code running correctly is
not very difficult, but getting it to perform well can still be
quite a challenge. Ultimately, the achieved performance for
an application is a complicated interaction between a variety
of parameters, some set by the application developer, others
imposed by the architecture of the particular graphics engine
being used. The interactions between these parameters, as
well as the impact of each on the application’s performance,
are often not well understood.

We can improve our understanding of the performance of
applications on graphics engines through the use of analytic
performance models, and several research groups have made
good progress in developing such models. Ryoo et al. [11]
summarize five categories of optimization mechanisms, us-
ing Pareto-optimal curves to prune the program optimization

space by up to 98%. They do not, however, consider mem-
ory latency and multiple conflicting performance indicators.
Hong et al. [7] propose a simple analytical model to capture
an estimate of the cost of memory operations by counting
the number of parallel memory requests in terms of memory-
warp parallelism and computation-warp parallelism. But
their assumption of no cache misses is not always realistic.

Liu et al. [8] describe a general performance model that
predicts the performance of a biosequence database scanning
application fairly precisely. Their model incorporates the
relationship between problem size and performance, but does
not look into microarchitecture-level parameters like how the
number of threads and blocks influence the run time. Bagh-
sorkhi et al. [2] measure performance factors in isolation
and later combine them to model the overall performance
via work flow graphs so that the interactive effects between
different performance factors are modeled correctly. Their
compiler-based approach still doesn’t provide suggestions
for run-time configuration of kernels. Govindaraju et al. [5]
propose a cache model for efficiently implementing three
memory intensive scientific applications with nested loops.
It is helpful for applications with 2D-block representations
while choosing an appropriate block size by estimating
cache misses. He et al. [6] focus on the access patterns of
gather and scatter operations, which can suffer from low
memory bandwidth utilization, and design a probabilistic
cache model to predict cache misses. Zhang et al. [13]
present a quantitative performance model that characterizes
an application’s performance as being primarily bounded by
one of three potential limits: instruction pipeline, shared
memory accesses, and global memory accesses. In the
present work, we focus on applications that are performance
limited by the memory subsystem, in effect following the
concept of [13], providing an analytic model for achievable
processing throughput for a class of applications that typi-
cally have poor memory performance: hashing.

It is well understood that the memory bandwidth achiev-
able by an application is not only impacted by which
memory subsystem is being accessed (e.g., whether one
is reading from off-chip global memory or on-chip shared
memory), it is also impacted by the address access patterns
themselves (i.e., whether or not global memory reads are

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.19

24

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.19

24

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.19

24

2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors

1063-6862/12 $26.00 © 2012 IEEE

DOI 10.1109/ASAP.2012.19

24

coalesced). Applications that employ hashing are particu-
larly problematic from this perspective, since the size of the
shared memory (which supports efficient random access) is
limited and random accesses to global memory are difficult,
if not impossible, to coalesce.

In our prior work [9], we presented an analytic model
that described the performance of a Bloom filter [3] in terms
of the parameters mentioned above. In that model, we con-
strained the number of requested blocks to evenly divide the
work across the multiprocessors. In the present model, that
restriction is lifted, characterizing application performance
over a wider parameter space than the previous model. We
also add support for modeling caches, incorporating the
effect of cache misses into the performance expressions.
In addition, this paper extends the model validation in
two significant ways. First, we develop a micro-benchmark
application that can be used to generate arbitrary memory
access patterns. This allows us to separately investigate
different performance factors and ultimately combine them
into a coherent framework. Furthermore, this also provides
us with the ability to perform a more comprehensive em-
pirical validation of the analytic performance model. The
validation effort uses an NVIDIA GTX480, based on the
Fermi architecture. Second, we add a second real application
from the literature [12] to further strengthen the empirical
validation effort. Both our initial application (BLAST) and
our second application (DNA classification) have Bloom
filters as substantial components in their computation.

We conclude that it is reasonable to accurately char-
acterize the memory subsystem performance for hashing-
dominated applications, and that under the proper circum-
stances graphics engines can be effective computational
resources for executing applications even in the face of poor
memory access patterns.

II. PERFORMANCE MODEL

In this paper, we will utilize both throughput (num-
ber of input data elements processed per unit time) and
execution time (time to process a fixed size data set)
as the performance metrics of interest. Our focus is on
applications whose performance is dominated by memory
access bandwidth, either to the shared memory or to the
global memory. We concentrate on the throughput of the
kernel executing on the graphics engine itself, leaving the
performance assessment of data transfers to and from the
graphics engine for other work. (In the two applications used
for empirical evaluation in this paper, the performance is
dominated by kernel execution time.)

We characterize application performance in terms of a
variety of parameters, with application parameters summa-
rized in Table I and architecture parameters summarized
in Table II. The exposition below first reviews the model
from [9] and then extends that model over a wider range of
parameters and set of applications.

Table I
APPLICATION PARAMETERS

Parameter Description

D Data set size
k Number of hashing functions
m Working set size
n Size of decomposed sub-problem
RT Number of registers per thread
SB Shared memory used per block (in bytes)
Br Requested number of blocks (total)
Tr Requested number of threads per block

Table II
ARCHITECTURE PARAMETERS

Parameter Description

MP Number of multiprocessors
S Shared memory per multiprocessor (in bytes)
R Number of registers per multiprocessor
W Warp size (in number of threads)
C Cache size
NW Min number of warps
Bmax Max number of blocks (total)
TmaxB Max number of threads per block
TmaxMP Max number of threads per multiprocessor

A. Base Model

When a kernel is launched, the application specifies a
request for a number of blocks, Br, and a number of threads
per block, Tr. Together, these two parameters determine the
occupancy of the multiprocessors in the graphics engine.
First, we want to know how many active blocks can be
launched on each multiprocessor, denoted Ba. This can be
expressed in terms of the register usage, shared memory
usage, and fixed device capability.

Ba = min

(⌊
S

SB

⌋
,

⌊
R

RT × Tr

⌋
,

⌊
Bmax

MP

⌋
,

⌊
TmaxMP

Tr

⌋)
(1)

Second, throughput is maximized when the requested
number of blocks Br is an integer multiple of the product
of Ba and MP, thereby balancing the number of blocks
allocated to each multiprocessor.

Bopt = {Br = i×Ba ×MP | i ∈ N} (2)

Here, Bopt is the set of possible block request counts that is
required to yield peak (optimal) performance.

Third, in a similar manner, the number of threads per
block Tr should be an integer multiple of the warp size
W , forming a set of possible requested threads per block
necessary for peak (optimal) performance, Topt.

Topt = {Tr = j ×W | j ∈ N} (3)

Finally, we define a set of Boolean indicators that encode
whether or not the requested number of blocks is in the
optimal set and is feasible given the practical constraints
of the engine (denoted by AB), and whether or not the

25252525

requested number of threads per block meets similar condi-
tions (denoted by AT).

AB = Br ∈ Bopt ∧ (4)
Br ≤ Bmax

AT = Tr ∈ Topt ∧ (5)
Tr ≥ NW ×W ∧

Tr ≤ min

(
TmaxB,

TmaxMP

Ba

)
∧

Tr ≥
R
Rt

Br

MP + 1

Beyond membership in Bopt, the only constraint on the
number of blocks is that it is within the count allowed by
the system. For the number of threads per block, constraints
include a minimum number (to mask latencies and provide
sufficient parallelism) as well as an upper bound based
on resource limits. The derivation of these constraints are
provided in [9].

B. Model Extension

Additional variables used in the models are listed in
Table III.

Table III
MODEL VARIABLES

Variable Description

Ba Active number of blocks per multiprocessor
AB Optimal block number indicator (Boolean)
AT Optimal thread number indicator (Boolean)
AC Working set fit in cache indicator (Boolean)
Bopt Set of optimal numbers of blocks (total)
Topt Set of optimal numbers of threads per block
fapp Application algorithmic complexity
fcache Cache factor
fsched Block scheduling factor
rH Cache hit rate
rM Cache miss rate
G Ratio of cache to main memory throughput
−→algo Vector of algorithm parameters
−→inpt Vector of input size parameters
Time Execution time (in seconds)
Timemin Shortest execution time (in seconds)
Tput Throughput (in data elements per second)

What follows extends the model from [9]. Each appli-
cation’s peak performance is first described in terms of
its algorithmic complexity. The algorithmic complexity is
expressed via a function fapp(

−→algo,−→inpt), defined in terms
of an algorithm parameter vector −→algo and an input size
vector −→inpt. −→algo includes parameters from the algorithm design
and implementation, e.g., number of hashing functions in
a Bloom filter, size of a sub-block computation, etc. −→inpt

takes the parameters relevant to the input problem size and
working set size. The form of fapp is, of course, application
specific. Specific examples will be provided in the sections

below. fapp can be regarded as a general adapter of the model
to different problem sizes, algorithms, and even to different
implementations of each algorithm.

Similar to the indicators AB and AT (described above)
that articulate whether or not a kernel’s configuration (the
combination of Br and Tr) is optimal, an additional indicator
AC can be used to articulate whether or not the kernel’s
working set m fits in on-chip memory spaces, either shared
memory or L1 cache. If the working set is allocated to and
fits in shared memory, AC is true because each reference to
the working set is a hit. If shared memory isn’t used, AC

is true when the working set fits in L1 cache. This can be
expressed as:

AC =

{
m < S if using shared memory
m < C if using global memory. (6)

We are now in a position to articulate the peak performance
of an application given a set of values for −→algo and −→inpt.

Timemin ∝ fapp(
−→algo,−→inpt) if AT ∧AB ∧AC (7)

If and only if AB , AT and AC are true does the kernel
configuration provide peak performance.

Moving from peak performance, we next extend eqn. (7)
to incorporate the effects of cache and of block scheduling.

Time ∝ fapp(
−→algo,−→inpt)× fcache × fsched if AT (8)

Here, fcache reflects the performance impact due to cache
misses and fsched reflects the performance impact due to the
scheduling of blocks on multiprocessors. We consider each
factor in turn.

Assuming that our memory access patterns are random
(due to hashing), a simple model for cache hit rate is:

rH = min(1,
C

m
). (9)

The above expression yields a hit rate of 1 when the working
set size m is smaller than the cache size C. As the working
set size exceeds the cache size, the hit rate is modeled as
their ratio (reflecting the random access assumption). Given
a hit rate rH , the miss rate is straightforward to model:

rM = 1− rH (10)

We complete the cache performance model by expressing
the cache factor as a linear combination of execution times
that are blended by cache hit and miss rates:

fcache =

{
1 if AC

rH + rM ×G otherwise, (11)

where G reflects the multiplicative slowdown experienced
with very low cache hit rates. In principle, one would like to
express G in terms of the relative performance of the cache
and the global memory. In practice, however, their relative
performance difference is masked by the large number of
threads supported. In this work, G is empirically determined.

26262626

In a similar manner to the cache effects, fsched models the
impact of block scheduling on the application performance,
extending the overall model to predict execution time for
numbers of requested blocks that are not only within the set
Bopt, but also those outside of it.

fsched =
d Br

Ba×MPe ×Ba ×MP

Br
(12)

The above expression reflects the block scheduling process
on the multiprocessors, with the time determined by the
multiprocessor with the largest number of blocks assigned
to it (expressed via the ceiling function

⌈
Br

Ba×MP

⌉
). As we

will see below, this yields a distinctive zigzag pattern in the
throughput as the number of requested blocks is varied.

Given an expression for execution time, i.e. (8), we can
describe processing throughput in terms of the data set size
D and the execution time.

Tput = D/Time (13)

III. SYNTHETIC MICRO-BENCHMARK

Given the stated goal of understanding the performance of
applications with poor memory access patterns, we present
a synthetic micro-benchmark that allows us to quantitatively
explore the impact of random access patterns on application
throughput. The computation is intentionally simple enough
to ensure that memory accesses dominate its performance.

The choice of memory subsystem potentially has a signifi-
cant performance impact, especially for randomly distributed
accesses. In the present work, we focus on the shared mem-
ory and global memory subsystems, leaving the constant
memory and texture memory for future work.

Figures 1 and 2 help us understand the operation of
the micro-benchmark. Random numbers within a specified
address range (i.e., working set size) are populated initially
in the global memory. Then, as illustrated in Figure 1, each
thread reads an individual data element, interprets that data
element as a (random) pointer to a (synthetic) hash table in
shared memory, and fetches the value from the table. Each
block performs the same pattern of accesses, working with
an assigned range of the pointers stored in global memory.

In a variation of the micro-benchmark, illustrated in
Figure 2, the random pointers point to a (synthetic) hash
table in global memory. In both cases, the size of the hash
table (the working set size) is denoted by m.

We are now in a position to formulate a function fapp for
the above micro-benchmark. Here, there are no parameters
appropriate for −→algo, so it is empty. The only input parameter
is the data set size D, so −→inpt = (D) and thereby

fapp(D) = D (14)

and

Time ∝ D ×
d Br

Ba×MPe ×Ba ×MP

Br
if AT ∧AC . (15)

Figure 1. Shared memory random accesses.

Figure 2. Global memory random accesses.

To investigate how the block scheduling factor fsched
influences the runtime, a small working set size is used to
guarantee it fits on-chip, either in shared memory or L1
cache, so that AC is true. The impact of the choice of
memory subsystem accessed (whether shared or global) will
be represented in the proportionality constant, which will be
explored empirically.

The graphics engine used for this investigation is the
NVIDIA GTX480, which has 15 streaming multiprocessors,
MP = 15, each of which has 32 processor cores (480 cores
total). The GTX480 has 1.5 GB off-chip global memory.
Other architecture parameters are presented in Table IV.

We first empirically investigate how a range of choices for
Br influences the throughput for Tr = {960, 1024} ⊆ Topt.
The data set is 225 random 4-byte words. In Figure 3, we
use a working set size of 8 KB as the hashing range. In the
experiments, Br is varied from 1 to 90.

Our first observation from Figure 3 is that for both the
shared memory subsystem and the global memory sub-
system the empirically measured throughputs are closely
aligned with the model predictions. Over the range of
requested blocks explored in the graph, the values Br =
{15, 30, 45, 60, 75, 90} ⊆ Bopt give peak throughput (min-

27272727

Table IV
ARCHITECTURE SPECIFICATION

Parameter Specification

MP 15
S 16 KB or 48 KB (configurable)
C 48 KB or 16 KB (configurable)
R 32768
W 32
NW 6 (NVIDIA recommended)
Bmax 120
TmaxB 1024
TmaxMP 1536

Figure 3. Throughput vs. Br for random accesses to both shared and
global memory subsystems (D = 225, m = 8 KB).

imum execution time) consistent with the prediction of
eqn. (2), and when Br is not in Bopt the zigzag pattern
predicted by eqn. (8) is observed in the empirical data.

Our second observation is that there is a fairly significant
difference in throughput between the shared memory and
the global memory. This is consistent with our expectation
that the shared memory is better suited to the random access
patterns that drive the performance of the micro-benchmark.

To explore the impact of working set size on performance,
we repeat the experiments above varying m from the initial
value of 8 KB to 32 KB. The results of these experiments
are shown in Figure 4 (m = 32 KB).

As the working set size gets larger, the throughput for
the shared memory stays the same. This is consistent with
the entire hash table fitting in shared memory for each
working set size, so larger working sets do not provide any
throughput disadvantages. In contrast to the shared memory
result, the working set size has a dramatic impact on the
performance of global memory accesses. While the zigzag
pattern dependency on Br is retained, the peak throughput
is noticeably lower as the size of the working set increases.
This is due to the smaller working set size being able to

Figure 4. Throughput vs. Br for random accesses to both shared and
global memory subsystems (D = 225, m = 32 KB).

effectively exploit the on-chip caches that sit between the
global memory and the multiprocessors on the GTX480.

To quantify the effect on performance of cache, the cache
model fcache proposed in eqn. (11) is examined via the
micro-benchmark, fixing fsched to be optimal by ensuring
that Br ∈ Bopt. Cache hit rate rH and cache miss rate rM
are explored by varying the working set size m. Different
L1 cache sizes are also explored by setting it to 16 KB and
48 KB. Both the measured and model-predicted rates are
shown in Figure 5. Dramatic increases in cache misses and
decreases in cache hits are observed once a larger-than-cache
working set size m is used. We see a nice correspondence
between the modeled and measured results.

Figure 5. Cache hit and miss rates.

We next explore the cache model fcache. Figure 6 com-

28282828

pares measured and predicted execution times for the micro-
benchmark as the working set size is varied over the same
range as in Figure 5 (in this case, only for cache size 48 KB).
For small working sets (that fit in cache) and for large
working sets (that almost always miss cache) the execution
time is flat. Eqn (11) does a reasonably good job of modeling
the transition region between these two spaces.

Figure 6. Impact of cache on execution time.

Given the close match between model predictions and
empirical measurements for the micro-benchmark, we next
consider a pair of real applications from the field of com-
putational bioinformatics that are based either substantially
or entirely on hashing.

IV. BLOOM FILTER IN BLAST

BLAST is the most widely used tool for biosequence sim-
ilarity search, which is a fundamental and crucial application
for comparing and revealing the possibly biologically mean-
ingful relationships between a given query sequence and an
annotated database [1]. Given the rapid rate at which new
genomic sequence data is being produced, BLAST searches
have become progressively more and more expensive. In
Buhler et al. [4], a Bloom filter [3], a probabilistic hashing
algorithm and data structure for performing set membership
tests with a manageable risk of producing false positives, is
introduced at the front end of the traditional BLAST pipeline
to discard a large fraction of the database prior to explicit
table look-up and match verification.

A parallel Bloom filter algorithm for BLAST using a
graphics engine is described in [9]. The algorithm deposits
portions of the database in global memory, divides long
queries into a set of sub-queries, and maps each sub-query to
a specified Bloom-vector in shared memory for each kernel
block. Multiple passes over the database are needed as the
number of sub-queries are larger than the blocks the device

can maximally support. Each thread reads a string of DNA
characters (called a w-mer, since it is w characters in length)
from the database in global memory, sequentially executes
several hash functions in the kernel, and interrogates the
values in shared memory pointed to by the hash results.

It is straightforward to develop an expression for fapp that
reflects the Bloom filter implementation described above.
The algorithmic parameters include the number of hashing
functions k and sub-query size n, both are included in −→algo. In
terms of input problem size, we have the database sequence
size D and the query sequence size Q. This results in

−→algo = (k, n), (16)
−→inpt = (D,Q), (17)

and
fapp(
−→algo,−→inpt) = k × Q

n
×D. (18)

As the Bloom-vector is entirely held in shared memory,
AC is true. Substituting eqn. (18) into eqn. (8) yields an
expression for the performance of BLAST’s Bloom filter
executing on a graphics engine.

Time ∝ k×Q

n
×D×

d Br

Ba×MPe ×Ba ×MP

Br
if AT (19)

The Bloom filter was executed while searching human
chromosome 1 (250 MBases) against human chromosome
22 (50 MBases). The relations expressed in eqn. (18) were
validated in [9]. Choosing Tr = 1024 ∈ Topt, and drawing
empirical measurements from [9], the predictive power of
eqn. (19) is explored in Figure 7.

Figure 7. Throughput vs. Br on GTX480 for Bloom filter of BLASTN.

As can be seen in the figure, there is an excellent
correspondence between the empirical measurements and
the model predictions. While the model of [9] was able to
predict the repetitive nature of the performance peaks, it

29292929

made no attempt to predict the throughput over the entire
range of requested blocks.

V. DNA CLASSIFICATION

Another application that exploits hashing is DNA classifi-
cation with Bloom filters. As DNA sequencing technologies
provide ever more data to be analyzed, frequently biologists
are interested in identifying only the novel sequence in a
given data set. Stranneheim et al. [12] describe an algorithm,
called FACS, which uses Bloom filters to classify sequences
as belonging to one of many reference sequences V.S. being
novel. Their perl-based implementation is evaluated using
synthetic meta-genomic data sets and compared to conven-
tional methods such as BLAT and SSAHA2. Stranneheim
et al. observed a 21-fold speedup when FACS was executed
on a 2.8 GHz Intel Xeon processor.

We ported FACS to the NVIDIA graphics engine to
explore the potential for even greater performance gains.
There are numerous opportunities for parallel execution,
making it potentially well suited for the graphics engine;
however, its reliance on hashing as a basic operation poses
some question as to its ultimate suitability. Let us first assess
the opportunities for parallelism. Within each short query
sequence (typically less than 390 characters long), hashing
the w-mers (substrings of length w) are independent. In our
implementation, each w-mer within a query is assigned to
a thread, which is responsible for computing all of the k
hashes to implement the Bloom filter.

Second, the queries themselves (totaling approximately
105 sequences) are also independent and can be analyzed
in parallel. We assign queries to thread blocks. Further,
multiple kernel invocations are used to process groups of
queries, and CUDA streams are used to provide overlapping
kernel execution and memory copy to/from the graphics
engine. Figure 8 illustrates the organization of the FACS
implementation on the graphics engine.

Figure 8. Implementation of FACS DNA classification application.

In the empirical investigation that follows, Bloom filters
were created based on reference sequences from [12] with
a measured false positive rate of 0.014% (lower than that
in [12]), with one Bloom-vector per reference sequence. Due

to the much larger size of the Bloom-vectors than on-chip
shared memory, they were allocated to global memory.

The performance of this implementation can also be
predicted by our model. The number of hashing functions
k and the number of CUDA streams (which is inversely
proportional to Br) are the key parameters to be included in
−→algo. In terms of problem size, D is the number of sequences
to be classified. This results in

−→algo = (k,Br) (20)

and
−→inpt = (D). (21)

Since Br might be larger than the number of active blocks
that the multiprocessors can support, i.e., Ba×MP, multiple
passes are needed. So we have

fapp(
−→algo,−→inpt) = k× D

Br
× Br

Ba ×MP
= k× D

Ba ×MP
. (22)

AC is false for this application due to the much larger
Bloom-vector as working set than caches. So fcache is greater
than one, and substituting eqns. (22) and (11) into eqn. (8),
we obtain the runtime expression for DNA classification as

Time ∝ k × D

Ba ×MP
× (23)(

min

(
1,

C

m

)
+

(
1−min

(
1,

C

m

))
×G

)
×

d Br

Ba×MPe ×Ba ×MP

Br
if AT .

The model is experimentally assessed on the graphics
engine with the same synthetic meta-genome data set as [12],
including 105 short query sequences. In our implementation,
sequences are evenly distributed across a set of streaming
kernels, and Br blocks are requested on each kernel. This
division restricts the number of sequences to be processed
per kernel, therefore value options for Br are limited,
thereby preventing Br from being a multiple of Ba ×MP .

The predictions of the model are presented in Figure 9.
Because of the implementation restrictions described above,
there are fewer empirical values for Br relative to the
previous application. Nonetheless, we see an excellent align-
ment between the model’s predictions and the measured
throughput achieved by our implementation.

For this problem, the working set size m (512 KB) is
much larger than the cache, independent of the choice of
cache size (16 KB or 48 KB). As a result, we do not predict
a change in performance when the cache size is changed,
and this was confirmed experimentally as well.

Quantifying the throughput in terms of hashes processed
per second, our implementation executing on the GTX480
is 20 times faster than the perl version implementation
executing on an Intel Core 2 Duo CPU running at 2 GHz.

30303030

Figure 9. FACS throughput for different numbers of requested blocks.

VI. CONCLUSIONS

The paper has presented an analytical performance model
that is well suited for memory-limited kernels. The model is
validated using a synthetic micro-benchmark which allows
us to quantitatively explore the impact of random memory
access patterns in terms of cache effects and varied kernel
configuration options. Two real applications from computa-
tional bioinformatics are also used to further examine the
model’s effectiveness. Given the excellent match between
model predictions and empirical measurements, we conclude
that the model can be effectively used not only to understand
the performance of existing applications, but it can also be
used to help configure the tuning parameters that must be
set when executing any graphics engine kernel. The model
confirms that, in general, shared memory is better suited to
handling random memory access patterns. However, given
sufficient parallelism and a small enough working set, even
random access to global memory can be effective.

As future work, we intend to investigate the impact of
various access patterns (e.g., sequential, strided, random) on
other memory subsystems, such as constant memory and
texture memory. A comprehensive understanding of the di-
versified memory spaces within graphics engines, each with
distinct features, will be helpful for effectively implementing
complex kernels.

ACKNOWLEDGMENTS

This work was supported by NIH award R42 HG003225,
NSF grants CNS-0751212, CNS-0905368, and CNS-
0931693, and Exegy, Inc. R.D. Chamberlain is a principal
in BECS Technology, Inc.

REFERENCES

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman,
“Basic local alignment search tool,” Journal of Molecular
Biology, vol. 215, no. 3, pp. 403–410, Oct. 1990.

[2] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp,
and W.-M. Hwu, “An adaptive performance modeling tool
for GPU architectures,” in Proc. of Symp. on Principles and
Practice of Parallel Programming, 2010, pp. 105–114.

[3] B. Bloom, “Space/time tradeoffs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[4] J. Buhler, J. Lancaster, A. Jacob, and R. Chamberlain, “Mer-
cury BLASTN: Faster DNA sequence comparison using a
streaming hardware architecture,” in Proc. of Reconfigurable
Systems Summer Institute, June 2007.

[5] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A
memory model for scientific algorithms on graphics proces-
sors,” in Proc. of ACM/IEEE Supercomputing Conf., 2006.

[6] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient
gather and scatter operations on graphics processors,” in Proc.
of ACM/IEEE Supercomputing Conf., 2007.

[7] S. Hong and H. Kim, “An analytical model for a GPU
architecture with memory-level and thread-level parallelism
awareness,” in Proc. of 36th Int’l Symp. on Computer Archi-
tecture, 2009, pp. 152–163.

[8] W. Liu, W. Muller-Wittig, and B. Schmidt, “Performance
predictions for general-purpose computation on GPUs,” in
Proc. of Int’l Conf. on Parallel Processing, 2007.

[9] L. Ma, R. D. Chamberlain, J. D. Buhler, and M. A. Franklin,
“Bloom filter performance on graphics engines,” in Proc. of
Int’l Conf. on Parallel Processing, 2011, pp. 522–531.

[10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. Lefohn, and T. J. Purcell, “A survey of
general-purpose computation on graphics hardware,” Com-
puter Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[11] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z.
Ueng, J. A. Stratton, and W.-M. Hwu, “Program optimization
space pruning for a multithreaded GPU,” in Proc. of 6th
IEEE/ACM Int’l Symp. on Code Generation and Optimiza-
tion, 2008, pp. 195–204.

[12] H. Stranneheim, M. Käller, T. Allander, B. Andersson, L. Ar-
vestad, and J. Lundeberg, “Classification of DNA sequences
using Bloom filters,” Bioinformatics, vol. 26, pp. 1595–1600,
July 2010.

[13] Y. Zhang and J. Owens, “A quantitative performance analysis
model for GPU architectures,” in Proc. of Int’l Symp. on High
Performance Computer Architecture, Feb. 2011, pp. 382–393.

31313131

