
Acceleration of Binomial Options Pricing via
Parallelizing along Time-axis on a GPU

Narayan Ganesan
Roger D. Chamberlain
Jeremy Buhler

Narayan Ganesan, Roger D. Chamberlain, and Jeremy Buhler
“Acceleration of Binomial Options Pricing via Parallelizing along Time-axis
on a GPU,” in Proc. of Symp. on Application Accelerators in High
Performance Computing, July 2009.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Acceleration of Binomial Options Pricing via Parallelizing
along time-axis on a GPU

Narayan Ganesan
Dept. of Comp. Sci. and Engg

Washington University in St. Louis
Email: nganesan@wustl.edu

Roger D. Chamberlain
Dept. of Comp. Sci. and Engg

Washington University in St. Louis
Email: roger@wustl.edu

Jeremy Buhler
Dept. of Comp. Sci. and Engg

Washington University in St. Louis
Email:jbuhler@wustl.edu

I. I NTRODUCTION

Since the introduction of organized trading of options for com-
modities and equities, computing fair prices for options has been
an important problem in financial engineering. A variety of numer-
ical methods, including Monte Carlo methods, binomial trees, and
numerical solution of stochastic differential equations,are used to
compute fair prices. Traders and brokerage firms constantlystrive to
achieve faster calculation of option prices because timelyinformation
can mean the difference between a deal struck or missed, which
translates to substantial profit or loss. Hence, the latencyto compute
a fair option price plays an important role in short-term trading and
arbitrage.

Financial firms constantly seek faster, more accurate option pricing
methods in order to keep up with or ahead of their competitors. Ap-
proaches to improve latency include both more efficient trading strate-
gies or pricing algorithms and use of specialized, high-performance
computer architectures, such as FPGAs, many-core CPUs, andGPUs.
An exemplary low-latency implementation on FPGA of European
Options pricing via Monte-Carlo simulation was described in [1],
where15× speedup over an existing server, as well as outperforming
a GPU and Cell implementation was reported. Monte-Carlo methods
are usually exhaustive, time and compute intensive and takeinto
consideration various sources of uncertainties corresponding to real
market conditions. On the other hand, lattice(esp. binomial tree)
methods are faster and consider relatively few possibilities, uncer-
tainties and is a reasonable approximation to a variety of standard
market conditions.

In general, lattice methods in finance, generate a discrete lattice in
price and time(possibilities) and iterate backwards from the expiration
time to the current time. In this work, we describe a new strategy
to accelerate one of the most widely used option pricing algorithms,
the recombinant binomial tree model [2], on fine-grained parallel
architectures. Implementations on software programming languages
such as Fortran, C/C++, MATLAB, S-Plus, VBA Spreadsheets etc.,
are widely used in the financial industry. In addition there are also
other proprietary implementations of the algorithm optimized for
performance and latency on the native computer or architecture.

A parallel implementation of binomial tree method on FPGA
was described in [6], wherein the multiple nodes corresponding to
the same time index was computed concurrently. Another parallel
implementation for GPUs on the CUDA programming language is
released by NVIDIA [3] [4]. Multiple threads are programmedto
work on multiple nodes of the tree corresponding to a single time-
step followed by sequential processing of successive time-steps. In
addition, the coarse grained parallelism is effectively utilized compute
multiple options concurrently.

In this work we propose a strategy to accelerate the computation

of a single option pricing over the existing parallel implementations
as opposed to bulk options pricing. We achieve this by processing
multiple time instants of a single binomial tree concurrently in order
to minimize the latency. This strategy could be extremely useful in
updating the option price of a single “high-stake” or a smallgroup of
very important assets subject to variations in underlying assumptions
or changes in market conditions, so as to execute trading decisions
with minimum latency. More often than not, fluctuations in specific
market conditions or changes in underlying assumptions affect only
a subset of the assets within the entire portfolio. Hence, a minimum
latency updating of the relevant prices is extremely important in the
light of competition. In the binomial tree model, since timeinstants
are inherently dependent on the previous time-instants we propose a
strategy to break the relation by introducing symbolic dependencies
between nodes far apart in time. Since the symbolic dependencies
could be computed in parallel we thus achieve a speedup compared to
other implementations. The implementation was carried outNVIDIA
GPUs, though the algorithm could be implemented on other parallel
architectures as well. We theorize an optimal speedup of15× over a
comparable parallel implementation for a problem size of1000 time
steps. In general the expected speed-up is proportional to the square
root of the problem size.

II. BACKGROUND

An option is an agreement between anoption sellerand anoption
buyer for the right to buy or sell an asset for a fixed priceX at some
future timeT . The agreed-on timeT of the asset transaction is its
expiration time, while the agreed-on priceX is called thestrike price.
The asset itself has a time-varying priceS(t); at the time the option
is created, this is price called thespot priceS. The option buyer
may exercisethe option at timeT to buy or sell the asset at price
X, regardless of its actual valueS(T) at that time; alternatively, the
option may be allowed to expire without being exercised. Theprice
of an option depends not only onS, T , andX but also on factors
such as the inherent volatilityσ in the asset’s price and the short-term
risk-free interest rater, which provides a guaranteed rate of return.
A call option grants the holder the right to buy the underlying asset
at the strike price, while aput optiongrants the holder the right to
sell the underlying asset at the strike price.

The profit made by exercising an option is the difference between
the underlying asset priceS(T) and the strike priceX at the the
time of exercise, minus the price of the option. For call options, the
profit increases withS(T) − X, while for put options, it increases
with X −S(T). The fundamental assumption in determining the fair
option price for an asset, called therisk-free assumption, is that the
total profit made from the entire transaction, given the volatility of
the asset, must be at least equal to the return from an investment at
the risk-free interest rate.

S

uS

dS

Sd 2

S

Su2

Su3

uS

dS

Sd 3

Sd 4

Sd 2

S

Su2

Su4

up

up

up

up

up

up

dp

dp

dp

dp

up up
dp

dp

dp

dp

dp

dp

up

Fig. 1. A binomial tree describing the evolution of an asset’s price.

A. Binomial Tree Options Pricing

The binomial tree pricing model is a probabilistic model that
describes the change in price of an asset over time. The model
discretizes time into increments∆t and assumes that in each time
increment, the price can only go up or down by a fixed fraction.If
S(t) is the asset price at timet, then the priceS(t+∆t) at the next
time step either increases tou ·S with probabilitypu or decreases to
d · S with probability pd = 1 − pu. The factorsu andd depend on
the asset’s volatilityσ; in particular,u = eσ

√
∆t and d = e−σ

√
∆t.

Note thatu · d = 1.
Under the risk-free assumption, the price of the assetS at time

t+∆t is given byS(t+∆t) = er∆tS(t). Assuming the investment
is also risk-free, the expected price of the asset at timet + ∆t,

S(t + ∆t) = puuS(t) + pddS(t) (1)

should be equal toS(t)er∆t. The probabilities of the movements
can now be determined aspu = (er∆t − d)/(u − d). Now, with the
purchase of the option at the pricef , the value of the entire portfolio
is S(t)− f . Under an upward or downward movement of prices, the
expected value of the portfolio ispu(uS − fu)+pd(dS− fd) where
fu andfd are new values of the options under a up-tick or down-tick
of the asset price at timet+∆t. Under the risk-free assumption, the
price of the optionsfu andfd can now be related to its current price
f by

f = e−r∆t(pufu + (1 − pu)fd) (2)

from Equation (1) and the fact thatpd = 1 − pu.

III. I MPLEMENTATION

We want to compute the current option pricef for an underlying
asset with spot priceS and strike priceX at expiration timeT .
We are also given the asset’s volatilityσ and the assumed risk-free
interest rater.

To computef , we use a backwards dynamic programming recur-
rence based on Equation (2) as follows. The recurrence is initialized
at the leaves of the binomial tree in Figure 1, correspondingto
the expiration timeT , and proceeds backwards to the root node,
which corresponds to the current time (arbitrarily designated as 0).
In general, letft(c) be the option price at timet assuming that the
corresponding asset price at this time isc. At time T , the fair price
for a call option is simply the difference between the asset price at
time T and the strike price, i.e.

fT (S(T)) = max(S(T) − X, 0).

The max with 0 indicates that the option is of no value if the strike
price is greater than the asset’s actual price at timeT . To work
backwards to earlier time steps, we use Equation (2) as follows:

ft−∆t(c) = e−r∆t(puft(u · c) + (1 − pu)ft(d · c)). (3)

T0

dT

Fig. 2. Dynamic programming matrix for computing option prices. We may
concurrently compute all prices at timet − ∆t given the prices at timet.

We store the option prices corresponding to each asset priceat timet
in an arrayFt, such thatFt[i] = ft(u

t/∆t ·d2i ·S), for 0 ≤ i ≤ t/∆t.
Using this mapping, we can rewrite the recurrence (3) as

Ft−∆t[i] = e−r∆t(puFt[i] + (1 − pu)Ft[i + 1]). (4)

This last recurrence is computed as depicted in Figure 2;by iterating
T/∆t time steps, the desired option price for time 0 is nowF0[0].

Given sufficient computational resources, the option prices at time
t − ∆t can all be computed concurrently based on the prices at
time t. For example, in a GPU, the arrayFt could be stored in
shared memory, and|Ft| threads could be used to simultaneously
compute the option prices. SettingN = T/∆t, an architecture with
sufficient parallelism could therefore compute the desiredprice f0

in time Θ(N), whereas a serial implementation would require time
Θ(N2). If parallelism is limited to at mostn concurrent processing
elements, computation time could be reduced toΘ(N2/n).

A. Parallelization

Following equation (4), the price of the options at timet − 2∆t
can be related to the price at timet as follows,

Ft−2∆t(i) = e−r∆t(puFt−∆t(i) + (1 − pu)Ft−∆t(i + 1))

and hence,

Ft−2∆t(i) = e−2r∆t(p2

uFt(i) + 2pupdFt(i + 1) + p2

dFt(i + 2))

For the next step the option prices at timet − 3∆t could be related
to the prices att via the relation,

Ft−3∆t(i) = e−3r∆t(c0Ft(i)+c1Ft(i+1)+c2Ft(i+2)+c3Ft(i+3))

for some coefficientsc0, · · · , c3. In fact, the process could be
extended to any number of finite steps to arrive at a relation,where,

Ft−N∆t(i) = e−Nr∆t

N
∑

j=0

cjFt(i + j) (5)

Hence with the knowledge of the coefficientscj and the option prices
at timeft, it is possible to determine the corresponding prices at time
t − N∆t. The coefficientscj could either be calculated as a closed
form expression or could be updated iteratively as,

c′(i) = puc(i) + pdc(i + 1) (6)

and settingc′(i) = c(i) at the end of the iteration, with memory and
compute requirements exactly same as the option calculation itself.
Hence the threads working on the rightmost partition compute the
actual option prices while the threads working on other partitions
update the coefficientsc(i) based on their values in the previous
iteration. Hence a dependency relation is established between the

T0

dT

Fig. 3. The calculations can be parallelized where the rightmost partition
updates the option prices while the other partitions updatethe dependencies.

start and the end of each partition of sizeT/p time steps, where
p is the number of partitions. Now, the option prices could be
propagated from one boundary to the next, starting from the last
with the dependency relation just established, with a stride of T/p
time steps until we reach the first partition, which bears theoption
price at the current moment, thus achieving a speed-up ofp, as shown
in figure (3). Now, with the knowledge of the option prices at each
boundary, the values in the interior nodes could be filled in parallel
for all the partitions, if needed(as in American options).

In a parallel architecture such as a GPU, the different partitions
were computed independently on individual multiprocessors. While
each of multiprocessors themselves work on building a dependency
relation between the boundaries of the partition, they could be sized
so that the total number number of nodes within each is the same.
This would ensure proper load balancing and minimize the latency.

1) Optimality: While the latency of communication of boundary
values between the partitionsL depends on the specific architec-
ture, for a GPU the communication between the multiprocessors
is achieved through the global memory. The entire computation is
structured into 3 stages, where the first stage builds up the dependency
relations between the partitions in parallel, the second stage fast-
propagates the boundary values up the time axis sequentially and the
third fills in the values if necessary(as in an American option). With
a total ofp partitions, a simplistic analysis would indicate, the total
execution time forN time steps with a binomial tree ofN2/2 nodes
is,

Tex =
2N

p
+ Lp (7)

for optimality,
dTex

dp
= −2N

p2
+ L = 0 (8)

or p =
√

2N/L. Hence the total number of partition is inversely
proportional to the latency of communication between them.The
optimal time of execution is2

√
2NL. Hence, as the latency decreases

the number of partitions could be increased and time of execution
could be minimized. Since the latency is measured in units ofthe
fastest available communication within the device, the minimum
value is 1. It can be seen that the for smaller values ofp the speedup
is proportional to the number of partitions and for larger values the
incremental speedup is marginal and the communication latency L
overwhelms the performance, as shown in figure 4. However, a more
rigorous analysis would involve shared-memory characteristics of the
GPU, thread scheduling and the time to compute the intermediary
sums (5).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 ti
m

e

Number of partitions

Latency of Communication=2x
Latency of Communication=10x
Latency of Communication=20x
Latency of Communication=50x

Baseline Parallel Implementation

Fig. 4. Relative time with respect to a comparable parallel implementation.
The expected time for execution for different latencies fora problem of 1000
time steps.

An option pricing tree of 1024 time steps was computed on the
GPU, GeForce 8600GT. The values of the nodes for a tree at most
as large as 1024 time steps in single precision were stored within the
16K shared memory. Multiple blocks were processed on different
multiprocessors, which worked on computing the corresponding
symbolic coefficients. At the end of the current block the relating
symbolic coefficients were written on to the global memory ina
coalesced fashion thus utilizing the maximum bandwidth to the mem-
ory. The first(rightmost) block in charge of numerical computation
fetches the coefficients from the global memory after its numerical
phase, which is guaranteed to take longer than the other blocks due
to its size. The symbolic coefficients are then read concurrently by
an independent warp while threads in other warps processed the
coefficients for the previous blocks, thus implementing a effective
double buffer for concurrent communication and computation. Under
the given latency in communication and intermediary processing, a
speedup of 2x could be achieved in evaluating a single options tree,
with a 4-way parallel GPU.

IV. CONCLUSION

In this work we described a framework for parallelizing dependent
operations by breaking their dependency. Such a scheme could
be extremely useful in accelerating other applications including,
dynamic programming, numerical solution to differential equations
etc. We demonstrated the applicability of this approach to options
pricing problem via binomial trees and its implementation on a GPU.

ACKNOWLEDGMENT

This research has been supported by NIH grant R42 HG003225
and Exegy, Inc. R.D. Chamberlain is a principal in Exegy.

REFERENCES

[1] G. W. Morris and M. Aubury,Design Space Exploration of the European
Option Benchmark using Hyperstreams, Intl. Conf. on Field Prog. Logic
and App., pp. 5-10, 2007.

[2] J. C. Cox, S. A. Ross and M. Rubinstein,Option Pricing: A Simplified
Approach, J. of Financial Economics, Vol. 7, pp. 229-64, 1979.

[3] http://www.nvidia.com/cuda
[4] C. Kolb, M. Pharr,Option pricing on the GPUin GPU Gems 2, ISBN

0-321-33559-7, Addison-Wesley, Chapter 45, 2005.
[5] F. Black and M. Scholes,The pricing of options and corporate liabilities,

J. of Political Economy, Vol. 81, pp. 637-59, 1973.
[6] N. Singla, S. Parsons, M. A. Franklin and D. E. Taylor,Method and Sys-

tem for High Speed Options Pricing, Patent Application US 2007/0294157
A1, 2007.

