Acceleration of Binomial Options Pricing via
Parallelizing along Time-axis on a GPU

Narayan Ganesan
Roger D. Chamberlain
Jeremy Buhler

Narayan Ganesan, Roger D. Chamberlain, and Jeremy Buhler
“Acceleration of Binomial Options Pricing via Parallelizing along Time-axis

on a GPU,” in Proc. of Symp. on Application Accelerators in High
Performance Computing, July 2009.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Acceleration of Binomial Options Pricing via Paralleligin
along time-axis on a GPU

Narayan Ganesan
Dept. of Comp. Sci. and Engg
Washington University in St. Louis
Email: nganesan@wustl.edu

I. INTRODUCTION

Since the introduction of organized trading of options fome
modities and equities, computing fair prices for options leen
an important problem in financial engineering. A variety ofrer-
ical methods, including Monte Carlo methods, binomial $reend
numerical solution of stochastic differential equatioase used to
compute fair prices. Traders and brokerage firms constalrilye to
achieve faster calculation of option prices because tirmégrmation

Roger D. Chamberlain
Dept. of Comp. Sci. and Engg
Washington University in St. Louis
Email: roger@wustl.edu

Jeremy Buhler
Dept. of Comp. Sci. and Engg
Washington University in St. Louis
Email:jbuhler@wustl.edu

of a single option pricing over the existing parallel implkmations
as opposed to bulk options pricing. We achieve this by pgiogs
multiple time instants of a single binomial tree concurkeint order
to minimize the latency. This strategy could be extremelgfuisin
updating the option price of a single “high-stake” or a sngatlup of
very important assets subject to variations in underlyisguenptions
or changes in market conditions, so as to execute tradiniyides
with minimum latency. More often than not, fluctuations iresific
market conditions or changes in underlying assumptiorectafinly

can mean the difference between a deal struck or missedhwhig g hset of the assets within the entire portfolio. Hencejrénmim

translates to substantial profit or loss. Hence, the latém@pmpute
a fair option price plays an important role in short-ternding and
arbitrage.

Financial firms constantly seek faster, more accurate optitcing
methods in order to keep up with or ahead of their competitaps
proaches to improve latency include both more efficientiigdtrate-
gies or pricing algorithms and use of specialized, higHegerance
computer architectures, such as FPGAs, many-core CPUS Rhi.

latency updating of the relevant prices is extremely imgurin the
light of competition. In the binomial tree model, since tiimstants
are inherently dependent on the previous time-instantsrapase a
strategy to break the relation by introducing symbolic dejemcies
between nodes far apart in time. Since the symbolic depemeen
could be computed in parallel we thus achieve a speedup cechpa
other implementations. The implementation was carried\BUDIA
GPUs, though the algorithm could be implemented on otheallighr

An exemplary low-latency implementation on FPGA of Eurapeagchitectures as well. We theorize an optimal speeduief over a

Options pricing via Monte-Carlo simulation was described[1],

comparable parallel implementation for a problem siza@f0 time

wherel15x speedup over an existing server, as well as outperformiggeps. In general the expected speed-up is proportionéletsquare

a GPU and Cell implementation was reported. Monte-Carlchout
are usually exhaustive, time and compute intensive and itatice
consideration various sources of uncertainties corredipgnto real
market conditions. On the other hand, lattice(esp. binbrimize)
methods are faster and consider relatively few possiuljtuncer-
tainties and is a reasonable approximation to a variety arfidstrd
market conditions.

In general, lattice methods in finance, generate a discattied in
price and time(possibilities) and iterate backwards frbeexpiration
time to the current time. In this work, we describe a new stmat
to accelerate one of the most widely used option pricingrélyos,
the recombinant binomial tree model [2], on fine-grainedajbelr
architectures. Implementations on software programmamguages

root of the problem size.

Il. BACKGROUND

An option is an agreement between @ption sellerand anoption
buyerfor the right to buy or sell an asset for a fixed pri¥eat some
future timeT'. The agreed-on tim& of the asset transaction is its
expiration time while the agreed-on pric& is called thestrike price
The asset itself has a time-varying priSét); at the time the option
is created, this is price called thspot price S. The option buyer
may exercisethe option at timel" to buy or sell the asset at price
X, regardless of its actual valug(T") at that time; alternatively, the
option may be allowed to expire without being exercised. phee
of an option depends not only ofl, 7', and X but also on factors

such as Fortran, C/C++, MATLAB, S-Plus, VBA Spreadsheets, etsych as the inherent volatility in the asset’s price and the short-term

are widely used in the financial industry. In addition there also
other proprietary implementations of the algorithm opted for
performance and latency on the native computer or architect

risk-free interest rater, which provides a guaranteed rate of return.
A call option grants the holder the right to buy the underlying asset
at the strike price, while gut optiongrants the holder the right to

A parallel implementation of binomial tree method on FPGAell the underlying asset at the strike price.

was described in [6], wherein the multiple nodes correspando

The profit made by exercising an option is the difference between

the same time index was computed concurrently. Anotherlipbrathe underlying asset pric§(7) and the strike priceX at the the
implementation for GPUs on the CUDA programming language iime of exercise, minus the price of the option. For call opsi, the

released by NVIDIA [3] [4]. Multiple threads are programméal
work on multiple nodes of the tree corresponding to a sinighe-t
step followed by sequential processing of successive sireps. In
addition, the coarse grained parallelism is effectivellagtd compute
multiple options concurrently.

profit increases withS(7") — X, while for put options, it increases
with X — S(T'). The fundamental assumption in determining the fair
option price for an asset, called thisk-free assumptignis that the
total profit made from the entire transaction, given the tilitha of

the asset, must be at least equal to the return from an ineestat

In this work we propose a strategy to accelerate the conipatatthe risk-free interest rate.

m o

dr

11

N A I

Fig. 1. A binomial tree describing the evolution of an assetice. Fig. 2. Dynamic programming matrix for computing optionges. We may
concurrently compute all prices at tinte— At given the prices at time.

A. Binomial Tree Options Pricing

The binomial tree pricing model is a probabilistic model ttha/Ve store the option prices corresp?/nAolmg%to each assetgurigmet
describes the change in price of an asset over time. The moleRn arrayr?, such thatt[i] = fi(u™/="-d™-5), for 0 < i < t/At.
discretizes time into increment&¢ and assumes that in each timeJsing this mapping, we can rewrite the recurrence (3) as
|ncrement, the price can qnly go up or d_own by a fixed fractién. Froneli] = efr-At(qut [+ (1= pa) Bl +1]). 4)
S(t) is the asset price at timig then the priceS(t + At) at the next . . . o _
time step either increases 0 S with probability p,, or decreases to This last recurrence is computed as depicted in Figure 2egting

d - S with probability p; = 1 — p... The factorsu andd depend on 7'/At time steps, the desired option price for time 0 is nBy0].
the asset’s volatilityr; in particular,u = V2t andd = e~ VAL Given sufficient computational resources, the option grietime

Note thatu - d = 1. t — At can all be computed concurrently based on the prices at
Under the risk-free assumption, the price of the asbett time time ¢. For example, in a GPU, the array, could b? stored in
t+ At is given by S(t + At) = e"2*S(t). Assuming the investment shared memory, an¢F| threads could be used to simultaneously

is also risk-free, the expected price of the asset at timeAt, compute the option prices. Settilg = 7'/At, an architecture with
sufficient parallelism could therefore compute the despede fo
S(t + At) = puuS(t) + padS(t) @ in time O(N), whereas a serial implementation would require time

should be equal t§(t)e"". The probabilities of the movements©(N?). If parallelism is limited to at most concurrent processing
can now be determined as = (¢"** — d)/(u — d). Now, with the ~€lements, computation time could be reduce®iaV-/n).

purchase of the option at the prigethe value of the entire pqrtfollo A. Parallelization

is S(t) — f. Under an upward or downward movement of prices, the

expected value of the portfolio s, (uS — f.) + pa(dS — fa) where
fu and f; are new values of the options under a up-tick or down-tic
of the asset price at time+ A¢. Under the risk-free assumption, the 1, ,1, (i) = e " (pu Fi—ae(i) + (1 — pu) Fr—at(i + 1))

price of the optiongf,, and f; can now be related to its current price
f by and hence,

—rA
f= e pufu+ (1= pu)fa) @ Fani(i) = e A P2F(D) + 2pupaFi(i + 1) + pAF(i + 2)
from Equation (1) and the fact that; = 1 — p,,.

Following equation (4), the price of the options at tithe 2At
gan be related to the price at timeas follows,

For the next step the option prices at tithe 3A¢ could be related
11l. | MPLEMENTATION to the prices at via the relation,

We want to compute the current option prigefor an underlying g, 5, (i) = e > (co Fy (i) +c1 Fi (i+1)4c2 Fi (i+2)+c3 Fi (i+3))
asset with spot price5 and strike priceX at expiration timeT'.

We are also given the asset’s volatilityand the assumed risk-freefor some coefficientsco, - - - scs. In fact, th"j process CPU'd be

interest rate-. extended to any number of finite steps to arrive at a relatidrere,
To computef, we use a backwards dynamic programming recur- N

rence based on Equation (2) as follows. The recurrencetialinéd Fi_nac(i) = e~ Nrat Z c;Fy(i+j) (5)

at the leaves of the binomial tree in Figure 1, correspondimg =0

the expiration timeT’, and proceeds backwards to the root nod
which corresponds to the current time (arbitrarily desigdaas 0).
In general, letf:(c) be the option price at timé assuming that the
corresponding asset price at this timecisAt time 7', the fair price
for a call option is simply the difference between the assiepat
time T' and the strike price, i.e. ¢ (1) = puc(i) + pac(i + 1) (6)

Hence with the knowledge of the coefficiemtsand the option prices
at time f¢, it is possible to determine the corresponding prices at tim
t — NAt. The coefficients:; could either be calculated as a closed
form expression or could be updated iteratively as,

fr(S(T)) = max(S(T) — X, 0). and setting’ () = c(¢) at the end of the iteration, with memory and
compute requirements exactly same as the option calcoléself.
Hence the threads working on the rightmost partition comphe
actual option prices while the threads working on other ifians
update the coefficients(i) based on their values in the previous
froar(e) = e " (pufi(u-c) + (1 —pu) fi(d - c)). (3) iteration. Hence a dependency relation is established degtwthe

The max with 0 indicates that the option is of no value if theket
price is greater than the asset’s actual price at tifheTo work
backwards to earlier time steps, we use Equation (2) aswsilo

0 4---=-- AT &l AT T Latency of Communication=2x ———

T 11 Lk Latency of C 10x. <

| | | Y Latency of Communication=20x

T oo Lk Latency of Communjcaion=50x -~~~
\ Baseline Parallel

Fraction of time

dr o5

.
2 4 6 8 10 12 14 16 18 20
Number of partitions

Fig. 3. The calculations can be parallelized where the mgist partition Fig. 4. Relative time with respect to a comparable paraitgdlementation.
updates the option prices while the other partitions uptlz¢edependencies. The expected time for execution for different latencieséggroblem of 1000
time steps.

start and the end of each partition of siZgp time steps, where) =)
p is the number of partitions. Now, the option prices could be An option pricing tree of 1024 time steps was computed on the
propagated from one boundary to the next, starting from &sé | GPU, GeForce 86_OOGT. Th(_a va}lues of th_e_nodes for a tr_ee at most
as large as 1024 time steps in single precision were storttinvthe

16K shared memory. Multiple blocks were processed on differ
multiprocessors, which worked on computing the correspand
symbolic coefficients. At the end of the current block theatiely
symbolic coefficients were written on to the global memoryain
coalesced fashion thus utilizing the maximum bandwidttheorhem-

ory. The first(rightmost) block in charge of numerical corgion
fetches the coefficients from the global memory after its ercal

with the dependency relation just established, with a stofiT'/p
time steps until we reach the first partition, which bears dpdon
price at the current moment, thus achieving a speed-up & shown
in figure (3). Now, with the knowledge of the option prices atle
boundary, the values in the interior nodes could be filledarajel
for all the partitions, if needed(as in American options).

In a parallel architecture such as a GPU, the different tams
were computed independently on individual multiprocessdvhile e
each of multiprocessors themselves work on building a digrecy phgse, _Wh'Ch IS guaran_teed to_tgke longer than the othekidee
relation between the boundaries of the partition, they @¢dd sized to its size. The symbolic coefficients are then read conatgréoy

so that the total number number of nodes within each is theesarfi" |r?d.ependent warp Wh'le threads in ot.her warps procedsed t
This would ensure proper load balancing and minimize thenlat coefficients for the previous blocks, .thu.s implementing feative

1) Optimality: While the latency of communication of boundarydOUbl.e butfer for cgncurrent cpmmumcathn and cqmpumtmnder
values between the partitions depends on the specific architec-the given latency in commuplcathn and mtgrmedlgry Prores; a
ture, for a GPU the communication between the multiprocmssssos‘F_)eedup of 2x could be achieved in evaluating a single opticze,
is achieved through the global memory. The entire comprais with a 4-way parallel GPU.

structured into 3 stages, where the first stage builds upepertiency IV. CONCLUSION

relations between the partitions in pargllel, thg secomggstfast- In this work we described a framework for parallelizing degent
propagates the boundary values up the time axis sequgrdiadl the 0 ations by breaking their dependency. Such a schemed coul
third fills in the values if necessary(as in an American apti®vith extremely useful in accelerating other applicationsutiag,

a total ofp partitions, a simplistic analysis would indicate, the tOtadynamic programming, numerical solution to differentigjuations
execution time forV time steps with a binomial tree of*/2 nodes (¢ e demonstrated the applicability of this approach tioas

1S, 9N pricing problem via binomial trees and its implementationaoGPU.
Tew = o +Lp) ACKNOWLEDGMENT
for optimality, This research has been supported by NIH grant R42 HG003225
dT., 2N Lo ® and Exegy, Inc. R.D. Chamberlain is a principal in Exegy.
= —— 4+ =
dp p? REFERENCES

or p = y/2N/L. Hence the total number of partition is inverselyf{l] G. W. Morris and M. AuburyDesign Space Exploration of the European
proportional to the latency of communication between thdine Option Benchmark using Hyperstreanistl. Conf. on Field Prog. Logic

h . L and App., pp. 5-10, 2007.
optimal time of execution i8v/2N L. Hence, as the latency decrease&] 3 C ggx pSp A. Ross and M. Rubinstei®ption Pricing: A Simplified

the number of partitions could be increased and time of di@tu Approach J. of Financial Economics, Vol. 7, pp. 229-64, 1979.

could be minimized. Since the latency is measured in unitthef [3] http://www.nvidia.com/cuda

fastest available communication within the device, the imim [4] C. Kolb, M. Pharr,Option pricing on the GPUn GPU Gems 2, ISBN

yalue Is 1.' It can be seen that the for_s:maller values die speedup [5] Ig?ézlit_:isasr?sl\; égr?(l)slggl:hweeps)lr?gi’ngg?%t[?trioii’ jr?gibrporate liabilities

is proportional to the number of partitions and for largelues the J. of Political Economy, Vol. 81, pp. 637-59, 1973.

incremental speedup is marginal and the communicatiomdgt& [6] N. Singla, S. Parsons, M. A. Franklin and D. E. Taylbtethod and Sys-

overwhelms the performance, as shown in figure 4. Howevemra m tem for High Speed Options PricinBatent Application US 2007/0294157
rigorous analysis would involve shared-memory charasties of the Al, 2007.

GPU, thread scheduling and the time to compute the inteangdi

sums (5).

