

WiMAX System Level Modeling Methodology: A Tutorial

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis jain@wustl.edu http://www.cse.wustl.edu/~jain

The slides are available on-line in AWG-AATG Methodology Documents folder in WiMAX Forum AATG Group Documents

> WiMAX F2F Meeting, Taipei, Taiwan October 24, 2007

- Link-Level vs. System-Level Simulation
- System Modeling Parameters
- Application Traffic Models
- MAC Layer Modeling
- PHY Modeling
- Annexes
- 10 Facts About AATG Simulation Effort

Goals of System Level Model

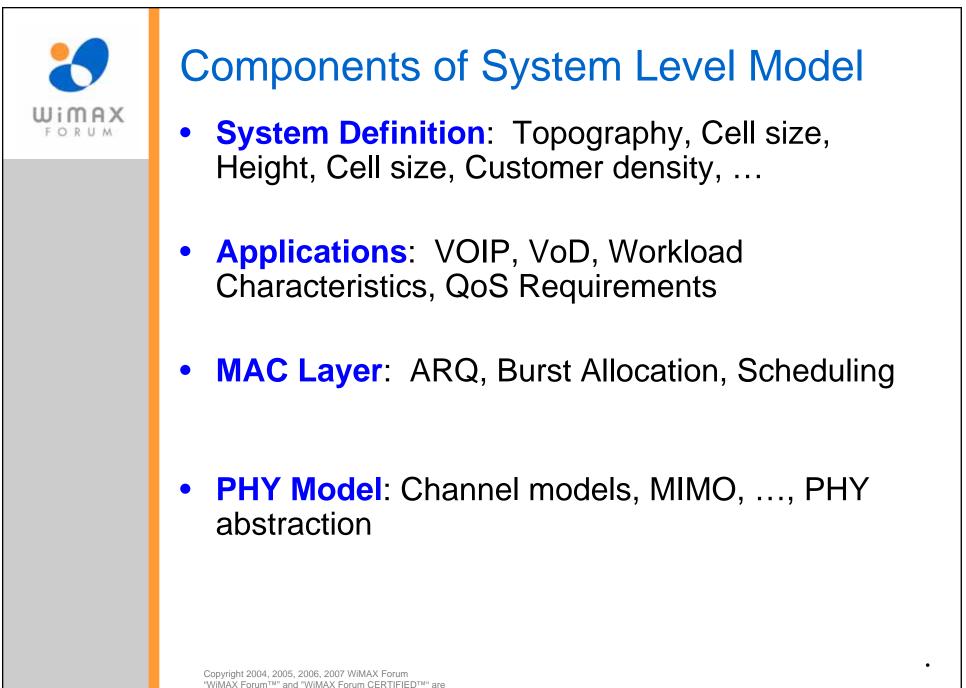
- Provide quantitative proof of WiMAX superiority
- Carriers need:

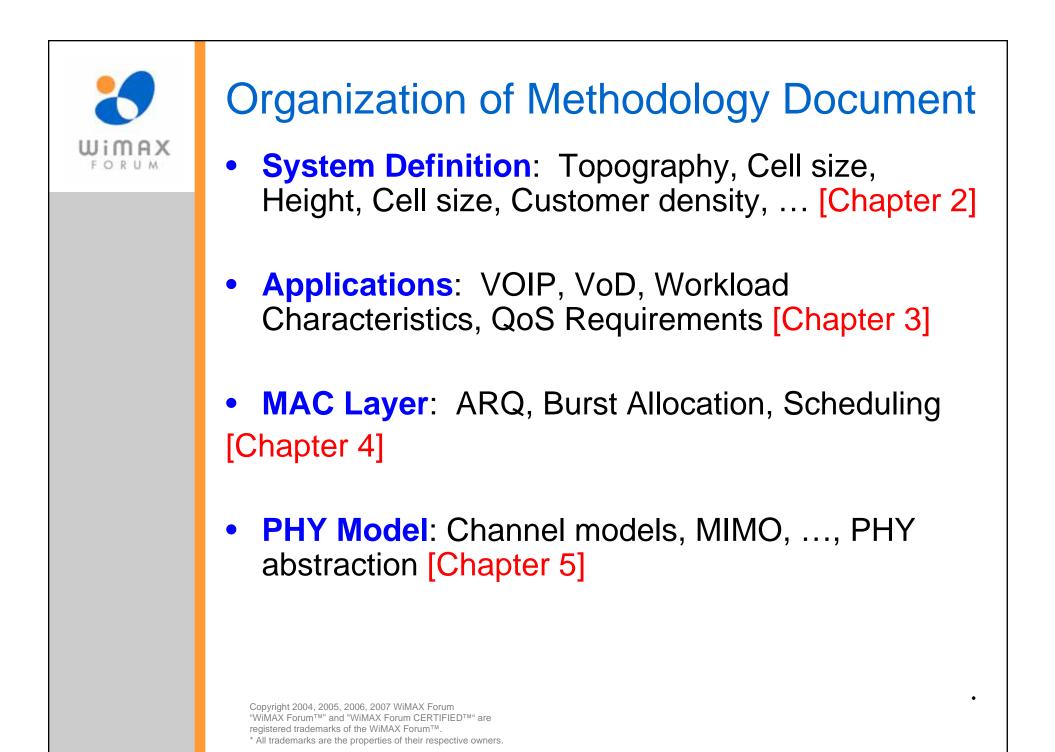
ORUM

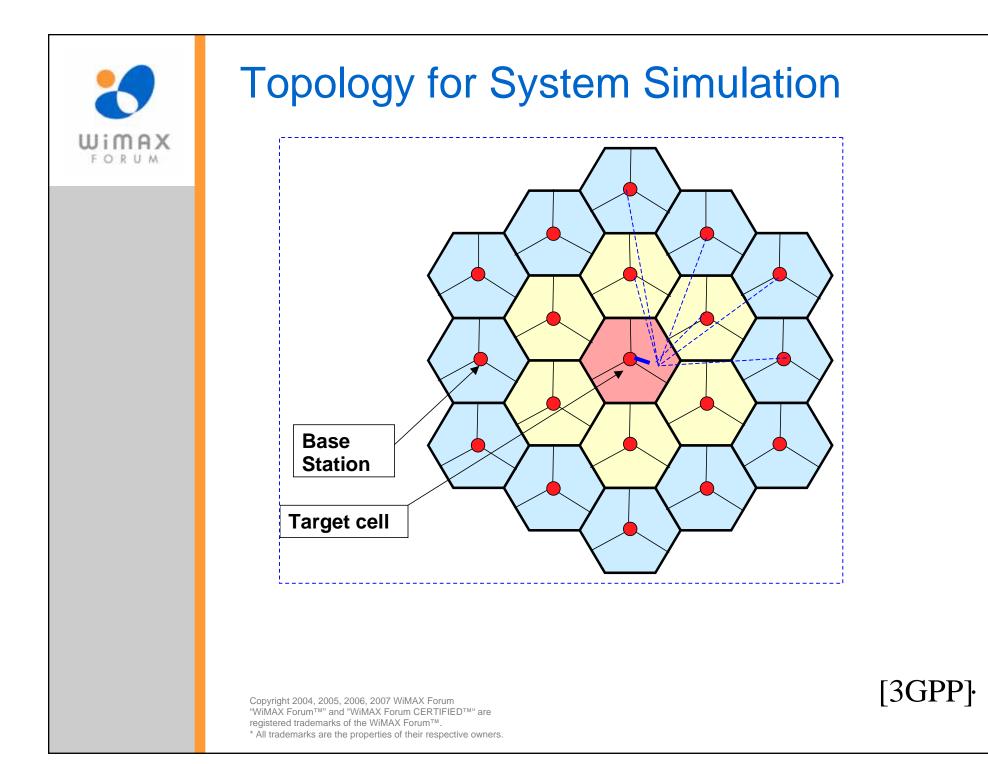
- Capacity Planning
- Performance Optimization
- Operational Guidelines
- Users need:
 - Operational Guidelines
- Vendors need:
 - Performance impact of various features
- ⇒ Develop a system level simulation methodology and simulation package for application performance analysis
- Consists of three related projects
 - System Level Simulation Methodology
 - Physical Layer Model Library
 - System-Level NS-2 Simulator

Wimax Forum

System-Level Simulation Methodology


- Agreed upon by WiMAX Forum members
- Can be used by anyone to develop their own simulation
- Can be used with any modeling platform: NS-2, OPNET, ...
- Specifies parameter values: ranges and default
- Specifies features and methods
- Allows comparison of performance results from different vendors
- Will be used in the WiMAX Forum's NS-2 Model
- Similar documents exist for 3GPP/3GPP2


System Simulation Approach


- Simulate multiple WiMAX cells
- Simulate application traffic streams; use realistic traffic models
- Distribute user session randomly among the cells
- Utilize neighboring cell traffic to create interference in the center cell
- Abstract PHY to a table/graph mapping physical condition to Block Error Rate (BLER)

Ref: WiMAX System-Level Evaluation Methodology V1.7, September 6, 2007, <u>http://www.wimaxforum.org/apps/org/workgroup/aatg/download.php/20819/WiMAX%20System%20Evaluation%20Methodology_070906.pdf</u>

registered trademarks of the WiMAX ForumTM.

Network Configuration Parameters

Parameter	Description	Value Range
N _c	Number of cells.	19
S	Number of sectors/cell.	1, 3 , 4, 6
$N_s = SN_c$	Total number of sectors.	19, 57 , 76, 114
R	BS-to-BS distance	0.5 to 30 km (1 km)
$\phi_{\scriptscriptstyle BS}$	Orientation (boresight angle) of each sector as defined by 3GPP- 3GPP2 [10]	$S = 3 : \phi_{BS} = 30,150,270$ $S = 6 : \phi_{BS} = 0,60,120,300$
K	Number of frequency allocations in the network.	1, 2, 3, 4, 6
F_{BS}	Frequency allocation (integer index) used in each BS sector.	1 , 2, 3, 4, 5, 6
	Operating Frequency	2.0–3.5 GHz (2.5 GHz)
	Duplexing Scheme	TDD

٠

System Modeling Parameters

- 1. Network Configuration Parameters
- 2. Base Station Equipment Model Parameters
- 3. Subscriber Station Equipment Model Parameters
- 4. OFDMA Air Interface Parameters
- 5. Propagation Model Parameters
- 6. Methodology Parameters
- 7. Dynamic System Simulation Features
- 8. Fading and Mobility Channel Model
- 9. Parameters for system outage calculation
- Key Contribution: These parameter values have been accepted as valid ranges and defaults by our PHY experts.

Application Classes

Class	Application	Bandwidth Guideline		Latency Guideline		Jitter Guideline	
1	Multiplayer	Low	50	Low < 25		N/A	
	Interactive		kbps		msec		
	Gaming						
2	VoIP &	Low	32-64	Low	< 160	Low	<50
	Video		kbps		msec		msec
	Conference						
3	Streaming	Low to	5 kbps	N/A		Low	<100
	Media	High	to 2				msec
			Mbps				
4	Web	Moderate	10	N/A		N/A	
	Browsing &		kbps to				
	Instant		2 Mbps				
	Messaging		-				
5	Media	High	> 2	N/A		N/A	
	Content	_	Mbps				
	Downloads		_				

٠

Application Traffic Models

- User-Level Traffic Models
 - Transactions
 - File transfers
 - Web pages
- IP Level Traffic Models
 - Packet size distribution
 - Inter-arrival time distribution

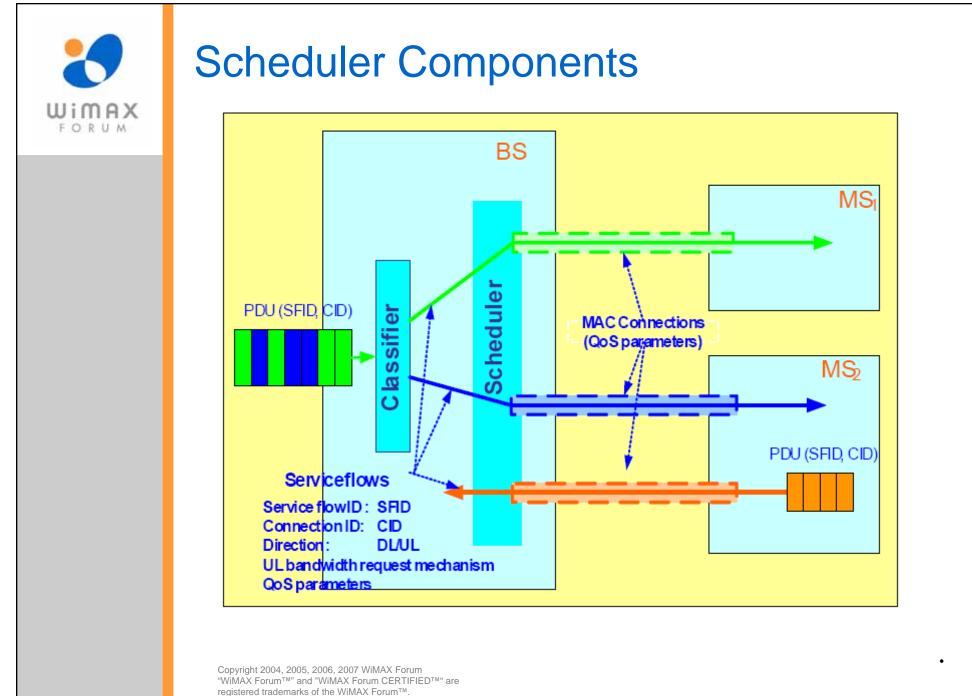
Quake 2 Traffic Model Parameters

Session Duration (hour)	Extreme (a=1, b=0.1), Truncated (0, 2)			
Client/Server	Data Model			
	Packet Inter- arrival time	Lower 4.5%, x<18:Extreme	a=6.57, b=0.517	
Client to Server	(msec)	Upper 95.5%, x>= 18: Extreme	a=37.9, b=7.22	
Cheffet to Server	Packet Sizes (byte)	Seven Distinct values	10.6%:36, 26.4%: 42, 6.26%: 44, 13.9%: 45, 4.95%: 46, 16.3%: 48, 21.5%: 51	
	Packet Inter-	Lower 4.8%, x<60:Extreme	a=58.2, b=7.47	
Server to Client	arrival time (sec)	Upper 95.2%, x>= 60: Normal	a=100, b=17.7	
Server to Client	Packet Sizes (byte)	Lower 27.6%, x<55:Extreme	a=46.7, b=4.39	
		Upper 72.4%, x>= 55: Extreme	a=79.7, b=11.3	

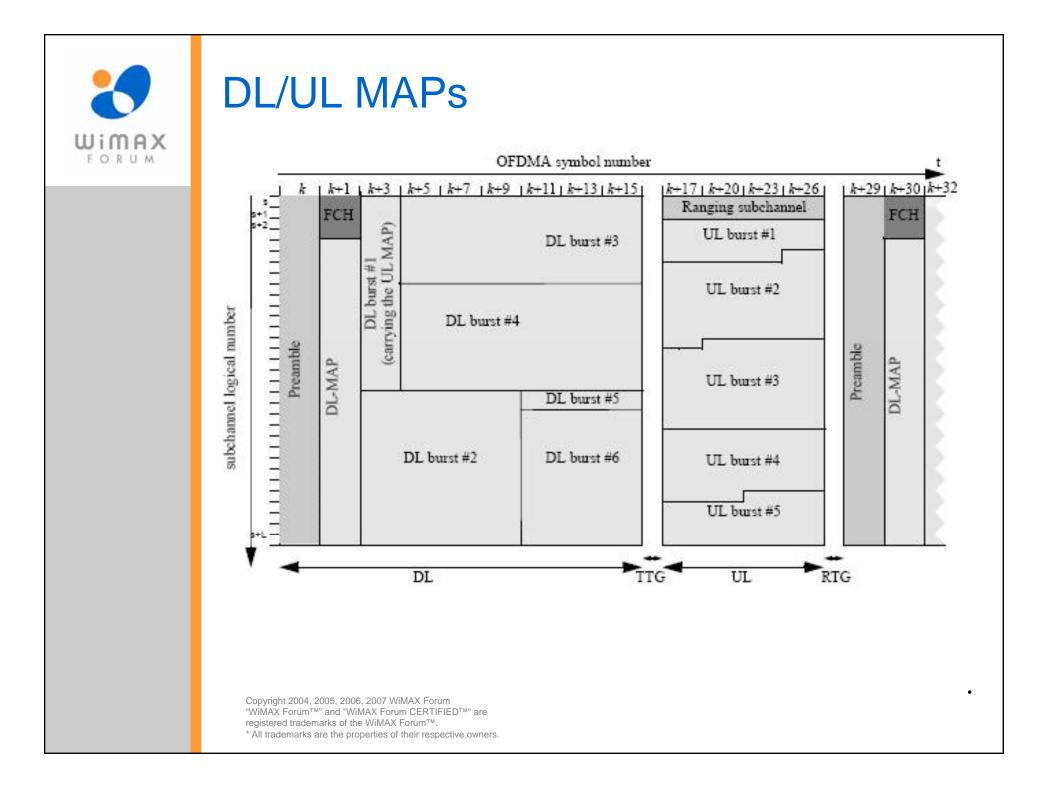
.

Applications

3.1 INTERNET GAME TRAFFIC MODEL (CLASS 1) 3.2 VOIP TRAFFIC MODEL (CLASS 2) 3.2 VIDEO CONFERENCE TRAFFIC MODEL (CLASS 2) 3.3 PTT TRAFFIC MODEL (CLASS 2) 3.4 MUSIC/SPEECH TRAFFIC MODEL (CLASS 3) 3.5 VIDEO CLIP TRAFFIC MODEL (CLASS 3) 3.6 MOVIE STREAMING TRAFFIC MODEL (CLASS 3) 3.7 MBS TRAFFIC MODEL (CLASS 3) 3.8 IM TRAFFIC MODEL (CLASS 4) 3.9 WEB BROWSING (HTTP) TRAFFIC MODEL 3.10 EMAIL TRAFFIC MODEL (CLASS 4) 3.11 TELEMETRY TRAFFIC MODEL (CLASS 5) 3.12 FTP TRAFFIC MODEL (CLASS 5) 3.13 P2P TRAFFIC MODEL (CLASS 5) 3.14 VPN SERVICE 3.15 NRTV (NEAR REAL TIME VIDEO) TRAFFIC MODEL [3GPP] Key Contribution: Many of these models are AATG original and are now part of 802.16m


Performance Metrics

- Output Metrics for Infinite Buffer Models
 - Average Sector Throughput (kbps/Cell)
 - Average connection throughput
 - Block error rate
 - Residual Block Error Rate (after max ARQ/H-ARQ exhausted)
 - Average Block delay per sector
- Output Metrics for Real-Traffic Models
 - Transaction completion time
 - Transactions per second
 - Fairness among similar users
 - Probability of Transactions in Error



MAC Layer Modeling

4.1 CONVERGENCE SUBLAYER 4.2 MAC PDU FORMATS 4.3 ARQ MECHANISMS 4.4 MAC SUPPORT OF PHY LAYER 4.5 SERVICE FLOW OPERATION 4.6 MAC SCHEDULER 4.7 UL/DL MAPS **4.8 H-ARQ 4.9 MOBILITY MANAGEMENT** 4.10 POWER MANAGEMENT - SLEEP-IDLE MODE 4.11 SECURITY (LATER RELEASE) 4.12 MBS (LATER RELEASE) **4.13 BUFFER MANAGEMENT**

* All trademarks are the properties of their respective owners.

DL/UL MAP Information Elements

МАР	IE size (bits)			
Fixed Compressed MAP (DL + UL + CRC)	N ₁ (152)			
Ranging region allocation IE (3IEs)	N ₂ (168)			
Fast feedback allocation IE	N ₃ (52)			
HARQ ACK region allocation IE	N ₄ (36)			
Fixed overhead in HARQ DL MAP IE	N ₅ (68)			
Fixed overhead in HARQ UL MAP IE	N ₆ (44)			
Interference and Noise IE	N ₇ (24)			
UL HARQ/user	N ₈ (33)			
DL HARQ/user	N ₉ (44)			
Additional Optional Fields	??			

Note: This is offered as an example of MAP elements and their sizes. Additional IEs **may/will** be present in certain frames (depending on options implemented). WMF members are welcome to propose & agree on a baseline representation prior to simulator development. Above list offers a viable starting point.

PHY Modeling

- 5.1 PHY MODEM ABSTRACTION FOR SYSTEM SIMULATION
- 5.2 MODELLING ADVANCED PHY FEATURES
 - 5.2.1 Advanced Antenna Systems
 - 5.2.2 Transmit Diversity
- 5.3 CHANNEL MODELS FOR SYSTEM SIMULATION
 - 5.3.1 Erceg Model
 - 5.3.2 Other Channel Models
- **5.4 MIMO ABSTRACTION**
 - 5.4.1 General Per-Tone Model
 - 5.4.2 SISO/MISO
 - 5.4.3 Linear Receivers
 - 5.4.4 2x2 Spatial Multiplexing (Vertical Encoding, Matrix B)
 - 5.4.5 Qx1 Beamforming
 - 5.4.6 Qx1 CDD (Cyclic Delay Diversity)
 - 5.4.7 Impact of Receiver Impairments

Key Contribution: MIMO abstraction is an AATG original and components of it will be submitted to 802.16m

PHY Layer Modeling: Channel Models

Table 5.3.1: Mixed User Channel Model for Performance Simulation

able 5.5.1: Mixed User Chaliner Model for Ferformance Simulation					
Channel Model	Numberof Paths	Speed (km/h)	Fading	Assignment Probability	
ITU Veh. B. Ch-103	6	3	Jakes	0.60	
ITU Veh. A. Ch-104	6	30	Jakes	0.30	
110 ven. A. Ch-104	6	120	Jakes	0.10	

Table 5.3.2: Channel Models and associated assignment probability distribution						
Channel Model	Multi-path Model	# of Paths	Speed (km/h)	Fading	Assignment Probability	
Model 1	Ch-100	1	30	Jakes	0.1	
Model 2	Ch-100	1	120	Jakes	0.1	
Model 3	Ch-104	б	30	Jakes	0.1	
Model 4	Ch-104	б	120	Jakes	0.1	
Model 5	Ch-102	4	3	Jakes	0.3	
Model 6	Ch-103	6	3	Jakes	0.3	
Note: Fading model is Raleigh. The fading spectrum model is Jakes.						
Assignment probability is variable. The values in this table represent recommended defaults.						

٠

Combining SINR

- SINR = Signal to Interference and Noise Ratio
- Channel Quality Indicator C = fn(SINR)
- Problem: Combine SINR for n subcarriers to a single SINR for the channel
 - SINR_{eff} = $f^{-1}{1/n \Sigma f(SINR_k)}$
- **Possible Solutions**: EESM, MIC, MIM, ECRM
- Exponential Effective SINR Mapping
 - Mapping Function: Exponential
 F(SINR_k)=e^{-SINRk/β}
 - $\Box \beta$ is adjusted to match the environment
 - Effective SINR:

$$SINR_{eff} = -\beta \ln \{1/N \Sigma e^{-SINRk/\beta}\}$$

APPENDIX A: A TUTORIAL ON CHANNEL MODELS

- A.1 BASIC CONCEPTS
 - A.1.1 Channel
 - A.1.2 Path Loss
 - A.1.3 Shadowing
 - A.1.4 Multipath
 - A.1.5 Tapped Delay Line Model
 - A.1.6 Doppler Spread
- A.2 EMPIRICAL PATH LOSS MODELS
 - A.2.1 Hata Model
 - A.2.2 COST 231 Extension to Hata Model
 - A.2.3 COST 231-Walfish-Ikegami Model
 - A.2.4 Erceg Model
 - A.2.5 Stanford University Interim (SUI) Channel Models
 - A.2.6 ITU Path Loss Models

Other Annexes

- ANNEX B: EESM PHY ABSTRACTION
- ANNEX C: MIC PHY ABSTRACTION
- ANNEX D: MIM PHY ABSTRACTION
- ANNEX E: EESM GRAPHS
- ANNEX F: ANTENNA PATTERN AND
 ORIENTATION
- ANNEX G: MODELING PUSC IN SYSTEM SIMULATION
- ANNEX H: A SAMPLE LINK BUDGET ANALYSIS
- ANNEX I: NS2 PROTOCOL LAYER MODULES
- ANNEX J: LIST OF KNOWN SIMULATION MODELS OF WIMAX

Summary

- 1. System-level \Rightarrow Multi-cell configuration
- 2. SLS document provides parameters and methods for simulating various features
- 3. Covers PHY, MAC and Applications
- 4. Applies to all simulation tools: NS2, Opnet, Qualnet
- 5. Applications and MIMO modeling details are original \Rightarrow Now included in 802.16m evaluation methodology

Wimax FORUM

Competing Technologies References

- 3GPP, SCM-111, "Spatial Channel Model Text Description", www.3gpp.org/ftp/tsg_ran/WG1_RL1/3GPP_3GPP2_SCM/ConfCal I-16-20030417/SCM-132%20Text%20v5.0.doc
- 2. **3GPP**, "Spatial channel model for multiple input multiple output (MIMO) simulations," Release 6, TR25.996 V6.1.0 (2003-09).
- 3GPP2, "1xEV-DV Evaluation Methodology," www.3gpp.org/ftp/tsg_ran/tsg_ran/TSGR_AHs/2001_11_3GPP2_H SDPA_Harmonisation/Docs/RPA010006.pdf
- 3GPP2, "CDMA2000 Evaluation Methodology," www.3gpp2.org/Public_html/specs/C.R1002-0_v1.0_041221.pdf
- 5. WINNER, "Final Report on Link Level and System Level Channel Models," Nov 2005.
- NGMN, "Next Generation Mobile Networks Radio Access Performance Evaluation Methodology," June 2007, http://www.ngmn.org/docs/NGMN_Evaluation_Methodology_V1.2.p df
- ITU-R Recommendation M.1225, "Guidelines for evaluation of radio transmission technologies for IMT-2000," 1997