Mobile TV Workload Characterization

Abdel-Karim Al Tamimi, Raj Jain, and Chakchai So-In Washington University in Saint Louis Saint Louis, MO 63130 {Jain,aa7,cs5}@cec.wustl.edu

> Presented at WiMAX Forum Meeting Washington DC, 19th November 2007

These slides are available on-line at: http://www.cse.wustl.edu/~jain/mtv711.htm

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

Objectives

- Develop models for packet generation that can be used with analytical and simulation models and in application optimization studies
- □ Understand and analyze available Mobile-TV trace

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

Mobile TV Trace

- I Mbps and 350 Kbps trace files have been provided by Alan Moskowitz of MobiTV.
- □ Trace files consists of RTP packets as shown below.
- \square "Mark" \Rightarrow End of the media packet
- □ The screen size determines the compression algorithm and the bit rate. For cell phones 350 kbps, IPTV 1 Mbps.
- □ This is the analysis of 1 Mbps trace with MJPEG.

	A	В	С	D	E	F	G	Н	1	J	К	L
1	No.	Time	Source		Destination	Protocol	Informatoin					Length
2	1	0	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45647	Time=1442975067	Mark	257
3	2	0.002032	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45648	Time=1442978070		1033
4	3	0.011757	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45649	Time=1442978070		568
5	4	0.015821	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45650	Time=1442978070	Mark	1427
6	5	0.028448	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45651	Time=1442981073		1172
7	7	0.038173	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45652	Time=1442981073		674
8	8	0.043253	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45653	Time=1442981073		1490
9	9	0.056752	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45654	Time=1442981073	Mark	595
10	10	0.061687	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45655	Time=1442984076		1332
11	12	0.073589	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45656	Time=1442984076	Mark	1359
12	13	0.084185	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45657	Time=1442987079		1105
13	14	0.093765	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45658	Time=1442987079		540
14	16	0.097829	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45659	Time=1442987079		1490
15	17	0.110456	172.16.230	.93	224.2.4.1	RTP	Payload type=Unknown (96)	SSRC=1727235052	Seq=45660	Time=1442987079	Mark	395
Washington University in St. Louis WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007 Raj Jain												

Analyzing 1 Mbps Trace

Attribute	Value
Mean Packet Size	3962 B
Minimum Packet Size	1400 B
Maximum Packet Size	19264 B
Sample Variance	8402640.1 B ²
Sample Standard Deviation	2898.7 B
Coefficient of Variation	0.73
Coefficient of Skewness	4.55

□ **Observation**: Large range, small CoV, High skewness \Rightarrow Not Normal

□ Past Model: Log-normal distribution in Methodology doc

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

Log Q-Q Section 2: Medium Packets

Statistical Model for 1 Mbps Mobile TV

$$y = \log(PacketSize) = \begin{cases} -2.866 \le x_i \le 0 \quad \rightarrow \quad y = 0.195x + 3.606 \\ \hline 0 \le x_i \le 1.754 \quad \rightarrow \quad y = 0.007x + 3.593 \\ \hline 1.754 \le x_i \le 2.866 \quad \rightarrow \quad y = 0.023x + 4.222 \end{cases}$$

□ If we were to follow this model, the packets would be generated as follows:

- ➤ Generate a N(0, 1) random variable
- > If the number is negative use the first formula
- If the number is positive but less than 1.754, use 2nd formula
- If the number is positive but more than 1.754 use 3rd formula

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

Statistical Model for 1 Mbps Mobile TV

$$y = PacketSize = \begin{cases} -2.866 \le x_i \le 0 \quad \rightarrow \quad y = 1172x + 3861\\ \hline 0 \le x_i \le 1.754 \quad \rightarrow \quad y = 4000\\ \hline 1.754 \le x_i \le 2.866 \quad \rightarrow \quad y = 1026x + 16556 \end{cases}$$

- □ If we were to follow this model, the packets would be generated as follows:
 - ➤ Generate a N(0, 1) random variable
 - > If the number is negative use the first formula
 - ▶ If the number is positive but less than 1.754, use 2nd formula
 - If the number is positive but more than 1.754 use 3rd formula

Washington

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

R² Calculations

Section	Packet Size	Log(Packet Size)
Section 1	0.925	0.935
Section 2	0.8	0.799
Section 3	0.811	0.808
$\Box R^2 \text{ values for both} \\ \Rightarrow \text{Use simpl}$	y and log y models are er model w/o log	almost same
Washington University in St. Louis WiMAX Fo	rum AATG F2F Interim, Washington, DC, N	ov 19-20, 2007 Raj Jain

- □ We have started to characterize Mobile TV workload
- □ Packet size distribution is not log-normal.
- There seem to be three parts: Normal, Uniform, Uniform

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

Future Work

- □ No firm conclusions can be drawn from just one trace
 - \Rightarrow Analyze more traces
 - \Rightarrow Analyze different bandwidth sizes
 - \Rightarrow Analyze different compression schemes (MPEG, MPEG-2, MPEG-4)
- Use more sophisticated model including time correlation
- □ Study performance
- Develop methods to optimize performance

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007

Time Correlation

References

- Kemal Ozdemir, Francis Retnasothie, "WiMAX Capacity Estimation for Triple Play Services including Mobile TV, VoIP, and Internet," Version 1.0, June 18, 2007.
- R. Jain, "The Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503361

WiMAX Forum AATG F2F Interim, Washington, DC, Nov 19-20, 2007