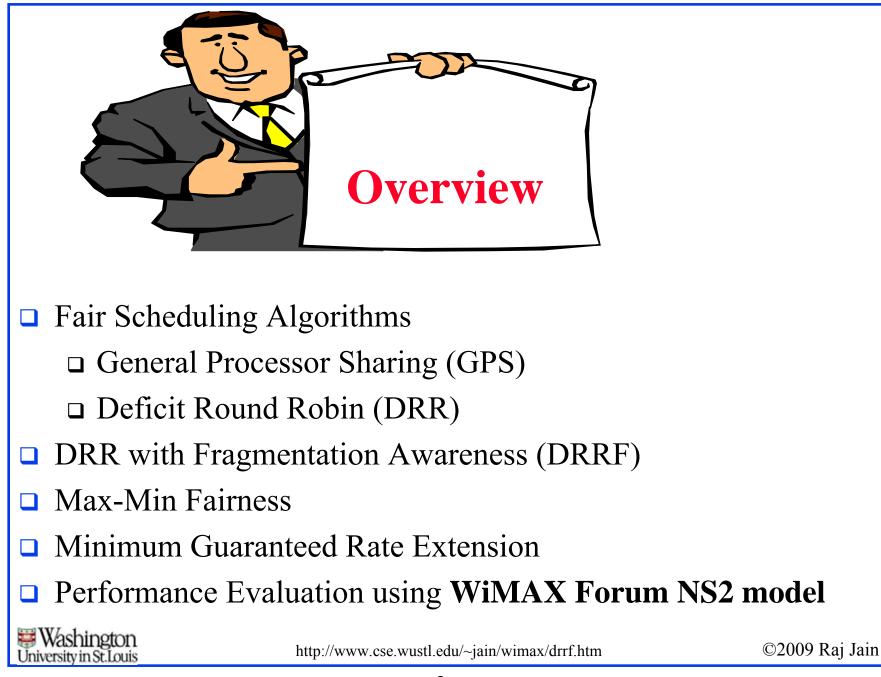
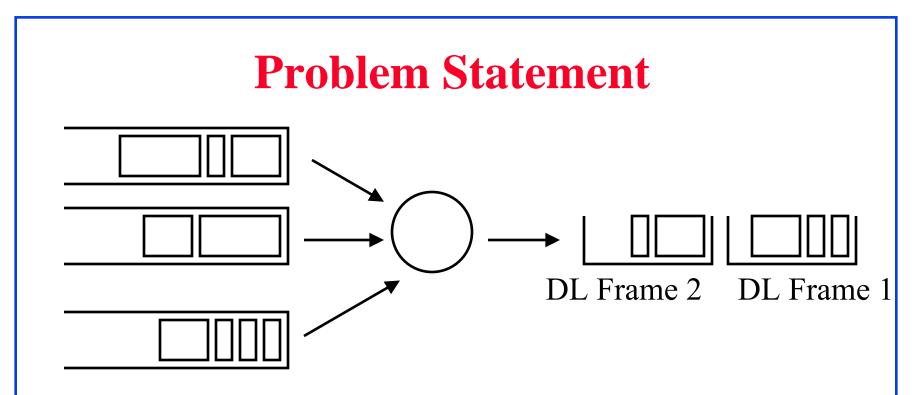
A Deficit Round Robin with Fragmentation Scheduler for Mobile WiMAX

Chakchai So-In, Raj Jain and Abdel-Karim Al Tammi Washington University in Saint Louis Saint Louis, MO 63130 jain@cse.wustl.edu

Presentation to WiMAX Forum Application Working Group Meeting, Orlando, FL, February 4-9, 2009


These slides are available at


http://www.cse.wustl.edu/~jain/wimax/drrf.htm

http://www.cse.wustl.edu/~jain/wimax/drrf.htm

©2009 Raj Jain

- Which queue(s) to serve in the next PHY DL frame?Goals:
 - Maximize throughput (minimize overhead, unused space)
 - □ Fair allocation

Washington

ersity in St Louis

Common Scheduling Algorithms

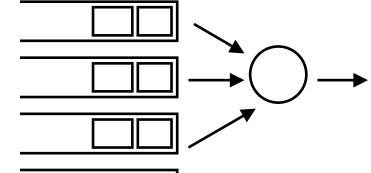
General Processor Sharing (GPS) [4]

Allocate the fair share to each MS regardless of packet size
 E.g., WiMAX frame capacity = 300B,
 4 MSs with 125B packet size

 \rightarrow 300/4 = 75B fragmented packet is transmitted.

Deficit Round Robin (DRR) [5]

□ Allow only full packet to be transmitted


If packet size > the fair share (quantum), the deficit is remembered.

 \square If the fair share + deficit > the packet size, the packet is transmitted and the deficit is updated.

Example of DRR

- □ 4 Mobile Stations (MSs)
- $\Box Packet size = 125B$
- **\Box** Frame capacity = 300B
- □ Quantum (fair share)= 300/4 = 75
- $\square RED = transmitted packets$
- □ Waste 50B each frame

#Transmitted Packet Size/ Deficit Counter

Frame		1		2		3		4
Round	1	2			3	4		
MS ₁	0/75	0/150	125/25	0/25	0/100	0/175	125/50	0/50
MS ₂	0/75	0/150	125/25	0/25	0/100	0/175	125/50	0/50
MS ₃	0/75	0/150	0/150	125/25	0/100	0/175	0/175	125/50
MS ₄	0/75	0/150	0/150	125/25	0/100	0/175	0/175	125/50
Washington University in St. Louis http://www.cse.wustl.edu/~jain/wimax/drrf.htm ©2009 Raj Jain								

DRR with Fragmentation Awareness

- □ Mobile WiMAX allows fragmentation.
- DRR with fragmentation (DRRF)
 - □ Similar to DRR: Transmit full packet
 - \rightarrow Reduce overhead: MAC and fragmentation headers
 - □ In case there are some left-over spaces + none of full packets are eligible, DRRF allocates those left-over spaces to some MSs. → Achieve full frame utilization

Metric/Scheduling	GPS	DRR	DRRF
Fairness	Perfect	Perfect	Perfect
Frame Utilization	High	Low	High
Overhead	Highest	Lowest	Low
Washington University in St. Louis http://ww	w.cse.wustl.edu/~jain/win	nax/drrf.htm	©2009 Raj Ja

Example of DRRF

#Transmitted Packet Size/ Deficit Counter

Frame	1			2			3	
Round	1	2			3	4		
MS ₁	0/75	0/150	125/25	0/25	0/100	0/175	100 /75	25 /50
MS ₂	0/75	0/150	125/25	0/25	0/100	0/175	0/175	125/50
MS ₃	0/75	0/150	50 /100	75 /25	0/100	0/175	0/175	125/50
MS ₄	0/75	0/150	0/150	125/25	0/100	0/175	0/175	25 /150

Frame		3	
Round		5	
MS_1	0/50	0/125	125/0
MS ₂	0/50	0/125	75 /50
MS ₃	0/50	0/125	0/125
MS ₄	100 /50	0/125	0/125

RED = transmitted packets BOLD RED = transmitted fragmented packets

Throughput Fair Allocation

- Broadband Wireless Networks
 - □ Link Capacity is not constant over time/distance.
 - WiMAX allows different Modulation and Coding (MCS) for different condition.
 - \Box Slot capacity \rightarrow variable (based on the channel condition)
- We uses #requested_slots not #requested_bytes (queue length) as an allocation unit

requested _slots = [queue _length / MCS _size]

MCS_size = #bytes/slot given MCS level
 E.g., Each slot QPSK1/2 results in 6B and 9B for QPSK3/4

Max-Min Fairness Algorithm

Some MS may not have enough traffic and may not be able to use the fair share.

```
Maximize{Min(requested _ slots(i))}
```

□ Pseuducode:

Calculate *#requested_slots/frame* for each MS given MCS Sort active MSs in ascending order of *MS_requested_slots* FOR each *active_MS_i*

 \square Calculate *#fair_slots* given MCS_i

 \square Update #granted_slots for each active MS_i

 \square Update *free_slots* and exit if *free_slots* == 0

END FOR

Max-Min Fairness (GPS and DRR(F))

- □ For GPS; we use *#granted_slots* as an actual allocation.
- □ For DRR(F); we use *#granted_slots* as a quantum.

Minimum Guaranteed Rate Extension

□ Some users may need to be favored over others.

- $r _ \min_slots(i) = \lceil r _ \min(i) \times t _ frame / MCS _ size(i) \rceil$
 - \Box *r_min(i)* = minimum guaranteed rate of mobile station *i*

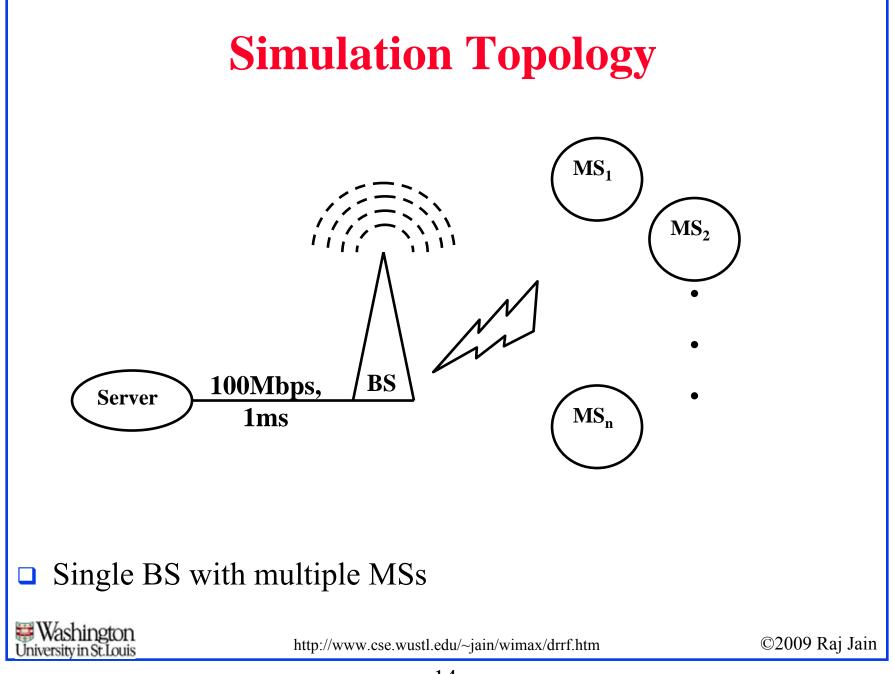
□ *t_frame* = WiMAX frame duration (5ms)

 \square *MCS_size(i)* = #bytes/slot given MCS level of MS_i

 $quantum(i) = Min[requested _slots(i), r_min_slot(i)]$

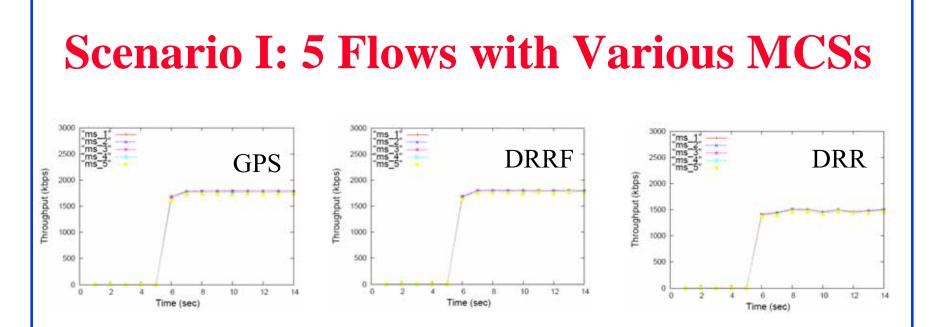
- □ For DRR and DRRF; quantum *i* is used as an initial deficit number for MS_i
- □ For GPS; quantum *i* is used as a minimum number of granted slots for MS_i

Max-Min Fairness with *r*_{min}

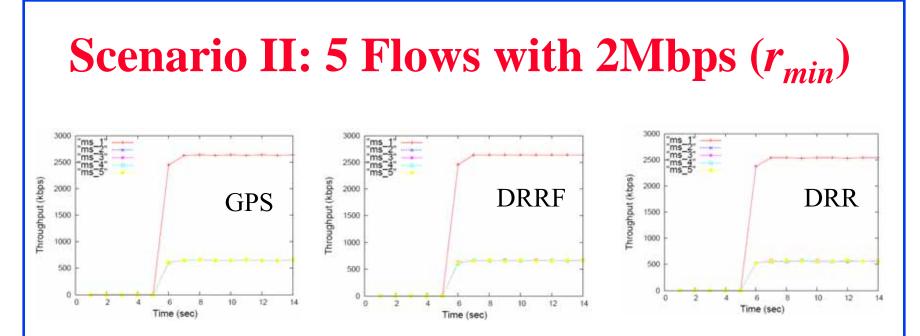

- □ For DRR(F), use *r_min_slot* to update deficit counter
- □ For GPS, use *r_min_slot* for minimum granted slots
 - □ We update *free_slots* given *r_min_slot* and then we also update *requested_slots*.
- □ We apply Max-Min Fairness Algorithm

Simulation Parameters/ Configuration

- □ WiMAX Methodology [1] and NS2 Simulator [3, 4]
- □ Frame Duration: 5ms
- □ Bandwidth: 10 MHz (FFT: 1024), total symbols = 48.6
- $\Box TTG + RTG = 1.6; left-over symbols = 47$
- □ Downlink ratio: 0.66 (DL 66%, UL 34%) ~ 2:1 [1]
 - □ #downlink symbols = 29 and 18 for #uplink symbols
- □ PUSC #DL Subchannels: 30, #UL Subchannels: 35
- □ ARQ and Packing are disabled.
- Downlink Preamble: 1 column-symbol



Workload/ Metrics/ Scenarios


- □ Traffic: UDP (CBR) at 0.3 and 3 Mbps (1500B packet size)
- □ 5 and 30 MSs or flows (3Mbps and 0.3Mbps in each scenario)
- □ Simulation starts from 0 sec to 15 sec (5 sec. setup process).
 □ Flows start at 5+0.005n sec, n = 0, 1, 2, ..., 30, end at 14 sec.
- □ Metrics: Throughput (kbps), %overhead and fairness
- □ Scenarios:
 - Throughput Fairness: 5 flows (QPSK3/4, 16QAM1/2, 16QAM3/4 and 64QAM1/2, 64QAM3/4)
 - □ Rate Guarantee: 5 flows (QPSK3/4) with 1 flow 2Mbps rate guaranteed
 - □ Throughput vs. overhead: 30 flows (QPSK3/4)

- With the modification by taking MCS into account; all three algorithm can achieve perfect throughput fairness.
- □ Fairness Index = 1 for all three algorithms

With the modification by taking r_{min} into account; all three algorithms support minimum bandwidth guaranteed (2 Mbps)
 □ The left-over bandwidth is distributed fairly. E.g., ≈ 2.6 Mbps for MS₁ and 600 Kbps for MS₂ to MS₅ with GPS or DRRF

Scenario III: Large Topology (30 flows)

Algorithms	System Throughput (kbps)	%Overhead	Fairness Index
GPS	3,649	10.26 ¹	1
DRRF	3,652 ²	0.851	1
DRR	2,409 ²	0.39	1

□ All three algorithms achieve perfect fairness.

□ Jain Fairness [6]

Vashington

$$f(x_1, x_2, ..., x_n) = \left(\sum_{i=1}^n x_i\right)^2 / n \sum_{i=1}^n x_i^2$$

□ ¹GPS: High link utilization BUT more overhead

- □ ² DRR: less overhead BUT also less throughput
- □ DRRF = GPS (High link utilization) + DRR (less overhead)

Summary

- Deficit Round Robin (DRR) with Fragmentation = Full frame utilization (similar to GPS)+ less overhead (similar to DRR)
- □ With MCS consideration, GPS, DRR and DRRF achieve perfect fairness (throughput).
- □ By taking r_{min} into account, GPS, DRR and DRRF can support minimum bandwidth guarantee
- WiMAX Forum NS2 model is usable for realistic problems

References

[1] WiMAX Forum, "WiMAX System Evaluation Methodology V2.1", 230 pp, July 2008, available at http://www.wimaxforum.org/technology/documents

http://www.wimaxforum.org/technology/documents

- [2] UCB/LBNL/VINT, "Network Simulator ns (version 2)," June 2007. <u>http://www.isi.edu/nsnam/ns/index.html</u>
- □ [3] WiMAX Forum, "The Network Simulator NS-2 MAC+PHY Add-On for WiMAX," August 2007. <u>http://www.wimaxforum.org</u>
- [4] Parekh, A. K., and Gallager, R. G., "A Generalized Processor Sharing approach to Flow control in Integrated Services Networks: The Single Node Case," IEEE/ACM Transaction in Networking, vol. 1, no. 3, pp. 334 – 337, June 1993.
- [5] Shreedhar, M. and Varghese, G., "Efficient fair queueing using deficit round robin," ACM SIGCOMM Communication Review, vol. 25, no. 4, pp. 231 242, October 1995.
- [6] Jain, R., Chiu, D.M., and Hawe, W., "A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Systems," DEC Research Report TR-301, 1984,

http://www.cse.wustl.edu/~jain/papers/fairness.htm .

