

T1/T3, E1/E3

- **SONET:** Components, Frame Format
- Multiplexing Hierarchy
- **Timing**
- Scrambling
- Protection: Rings
- **D** SDH, OTN

- Acceptable quality voice has a bandwidth of 4 kHz
 (300 Hz to 3300 Hz is transmitted on phone systems)
- Nyquist sampling theorem:
 Sample at twice the highest signal frequency
 ⇒ Sample at 8 kHz ⇒ Sample every 125 µsec
- □ 256 levels ⇒ 8 bits per sample × 8000 samples/sec
 = 64 kbps

Multiplexing

- ❑ Multiple conversations ⇒ Multiple frequency bands Frequency division multiplexing (FDM) Useful for analog signals.
- In 1962, telephone carrier cable between Bell System offices could carry approx 1.5 Mbps over a mile
 = Distance between manholes in large cities
 = Distance between amplifiers
- □ 1500/64 ≈ 24 ⇒ Can multiplex approx.
 24 voice channels on that carrier
 ⇒ Telecommunication-1 carrier or T1 carrier.

Named after the ANSI committee.

One channel for synchronization

One channel for signaling

Digital TDM Hierarchy

	North America		Europe		Japan
DS0	64 kbps		64 kbps		64 kbps
DS1	1.544 Mbps	E1	2.048 Mbps	J1	1.544 Mbps
DS2	6.313 Mbps	E2	8.448 Mbps	J2	6.312 Mbps
DS3	44.736 Mbps	E3	34.368 Mbps	J3	32.064 Mbps
DS4	274.176 Mbps	E4	139.264 Mbps	J4	97.728 Mbps
DS1C	3.152 Mbps	E5	565.148 Mbps	J5	397.200 Mbps

SONET

- Synchronous optical network
- Standard for digital optical transmission (bit pipe)
- Developed originally by Bellcore to allow mid-span meet between carriers: MCI and AT&T.
 Standardized by ANSI and then by ITU

 \Rightarrow Synchronous Digital Hierarchy (SDH)

□ You can lease a SONET connection from carriers

Physical Components

- □ Section = Single run of fiber
- □ Line = Between multiplexers
- $\Box Path = End-to-end$

Signal Hierarchy

Synchronous Transport Signal Level $n = STS - n = n \times 51.84$ Mbps STM=Synchronous Transport Module, OC=Optical Carrier level

ANSI	Optical	CCITT	Data Rate	Payload Rate
Designation	Signal	Designation	(Mbps)	(Mbps)
STS-1	OC-1		51.84	50.112
STS-3	OC-3	STM-1	155.52	150.336
STS-9	OC-9	STM-3	466.56	451.008
STS-12	OC-12	STM-4	622.08	601.344
STS-18	OC-18	STM-6	933.12	902.016
STS-24	OC-24	STM-8	1244.16	1202.688
STS-36	OC-36	STM-12	1866.24	1804.032
STS-48	OC-48	STM-16	2488.32	2405.376
STS-96	OC-96	STM-32	4976.64	4810.176
STS-192	OC-192	STM-64	9953.28	9620.928

Byte Multiplexing

- □ Also known as byte interleaving
- Easier to view in two dimension.
 Transmitted row first.

SONET Frame Format

- \Box OC-1 = 51.84 Mbps (payload and overhead)
- OC- $n = n \times 51.84$ Mbps

e.g., $OC-3 = 3 \times 51.84 = 155.54$ Mbps

- All SONET frames are 125 µs long.
 E.g., OC-3 frames are 2430 (125 × 155.54) bytes
- □ Represented as 2D arrays of bytes.

9 rows \times 90*n* columns. Transmitted row-wise

STS-1 Frame Format

STS-1 Overhead Bytes

SONET Overhead Bytes

Section Overhead:					
A1, A2:	Framing bytes = $F6-28_{16}$ (11110110-00101000 ₂)				
C1:	STS-1 ID identifies the STS-1 number (1 to N) for each STS-1 within an STS-N multiplex				
B1:	Bit-interleaved parity byte 8 (BIP81) providing even parity over previous STS-N frame after scrambling				
E1:	Section-level 64-kbps PCM voice channel for section maintenance				
F1:	64-kbps channel set aside for user purposes				
D1-D3:	192-kbps data communications channel for alarms, maintenance, control, and administration between sections				
Line Overhead:					
H1-H3:	Pointer bytes used in frame alignment and frequency adjustment of payload data				
B2:	Bit-interleaved parity for line-level error monitoring				
K1, K2:	Two bytes allocated for signaling between line-level automatic protection switching equipment				
D4-D12:	576-kbps data communications channel for alarms, maintenance, control, monitoring, and administration at the				
	line level				
Z1:	Reserved for future use				
Z2:	Count of blocks received in error				
E2:	64-kbps PCM voice channel for line maintenance				
Path Overhead:					
J1:	64-kbps channel used to send a 64-byte fixed-length string repetitively so a receiving terminal can continuously verify the integrity of a path; the contents of the message are user-programmable				
B3:	Bit-interleaved parity at the path level				
C2:	STS path signal label to designate equipped versus unequipped STS signals and, for equipped signals, the				
	specific STS payload mapping that might be needed in receiving terminals to interpret the payloads				
G1:	Status byte sent from path-terminating equipment back to path-originating equipment to convey status of				
	terminating equipment and path error performance				
F2:	64-kbps channel for path user				
H4:	Multiframe indicator for payloads needing frames that are longer than a single STS frame; multiframe indicators				
	are used when packing lower rate channels into the SPE				
Z3-Z5:	Reserved for future use				

STS-1 payload is 87 columns
 One column is used for path overhead
 Two columns (30th and 59th) are reserved for future
 84 columns = 7 VT groups of 12 columns each

VT Type	VT/Group	Payload	Mbps	Columns
VT1.5	4	T1	1.544	3
VT2	3	E1	2.048	4
VT3	2	DS-1c	3.152	6
VT6	1	DS-2	6.312	12

STS-3c Overhead bytes

• Only one of the 3 bytes in the overhead is used.

A1	A1	A1	A2	A2	A2	C1	C1	C1	J1
B1			E1			F1			B3
D1			D2			D3			C2
H1	H1	H1	H2	H2	H2	H3	H3	H3	G1
B2	B2	B2	K1			K2			F2
D4			D5			D6			H4
D7			D8			D9			Z 3
D10			D11			D12			Z4
Z1	Z1	Z1	Z2	Z2	Z2	E2			Z5

(a) Section and line overhead(b) Path overhead

1+1 Protection

- □ Signal is sent on both routes
- □ Receiver chooses the stronger signal
- $\Box \text{ No need for signaling} \Rightarrow \text{Fast}$
- Can be revertive or non-revertive Revertive = Return to original path after repair

1:1 Protection

- □ Signal is sent ONLY on working route
- □ Receiver signals the failure to the transmitter to switch
- Need an signaling channel for Automatic Protection Switching (APS)
- □ Protection line is used for APS signaling
- □ All switching is revertive

- □ Two counter rotating fibers: working+protection
- □ 1+1 ⇒ Signal is sent on both fibers, receiver takes the stronger signal
- Unidirectional: Working ring is in one direction

UPSR (Cont)

- Path-Switched: the path changes on a link failure.
 SONET Path overhead is used.
- □ Receiver controls the switching. No transmitter involvement ⇒ Fast
- □ No APS signaling channel required

4-Fiber BLSR (Cont)

- Line Switched: If only one fiber is cut, traffic is switched from working to protection fiber in the same direction
- □ SONET line overhead is used for APS signaling
- Ring Switched: If both fibers are cut, traffic is switched to protection ring
- □ 1:1 Protection: APS signaling channel is required
- \Box Signaling \Rightarrow Restoration time more than UPSR
- □ Preferred by long-haul carriers.

- Two counter rotating rings: both 1/2 working and 1/2 protection using TSI
- □ Allows only ring switching if one fiber is cut
- □ Ring wraps if both fibers are but

- Asynchronous: Each system has its own free running clock, e.g., data networks
- Plesiochronous: Each system derives its clock from its own primary reference source (PRS). Clocks are almost the same, e.g., T1 networks (nearly-synchronous)
- Isochronous: All systems derive their clock from one common primary reference source, e.g., SONET

Scrambling

- □ SONET uses NRZ coding.
 - 1 = Light On, 0 = Light Off.
- □ Too many 1's or 0's \Rightarrow Loss of bit clocking information
- □ All bytes (except some overhead bytes) are scrambled
- Scrambling = Adding a number or dividing by a number
- **Example:**
 - Division by 7: To send 10,000,000 send 1,428,751
 Add 142: Send 24,214,214
- □ Network devices use large binary numbers represented as polynomials, e.g., $10111 = x^4 + x^2 + x + 1$ ©2002 Raj Jain

SONET Scrambling

- SONET uses an additive scrambler: XOR the following 127 bits to incoming bits 1111 1110-0000 0100-0001 ... 010
- Generated by polynomial $1 + x^6 + x^7$ with a seed of 1111111
- Implemented easily in hardware with binary shift registers

Synchronous Digital Hierarchy

- □ Regenerator Section = Single run of fiber
- Multiplex Section = Between multiplexers
- $\Box Path = End-to-end$

SONET vs SDH

SONET	SDH
Section	Regeneration Section
Line	Multiplex Section
Path	Path
Byte	Octet
Tributary	Container
	Virtual Container
Virtual Tributary	Tributary Unit
Virtual Tributary Group	Tributary Unit Group
	Administrative Unit
UPSR	SNCP
BLSR	MS-SPRing

- □ All telephone systems use a 125µs cycle
- □ T1/T3 are electrical transports used in access networks
- □ STS-n = OC-n = n X 51. Mbps line rate STM-n = STS-3n is used in Europe
- □ SONET/SDH have ring based protection
- □ OTN uses FEC digital wrapper and allows WDM G2002 Raj Jain

Homework 4

True or False?

ΤF

□ □ Telephone networks are designed to carry voice signal of 8 kHz

 \Box \Box A T1 frame consists of 193 bits per 125 μs

□ □ A single run of fiber between two amplifiers constitutes a SONET section.

□ □ OC-768 is approximately 40 Gbps.

□ □ A STS-1 frame consists of 9 rows and 90 columns

□ □ T1's are sent through SONET network as VT1.5

□ □ STS-3c indicates channelized STS-3

□ □ 1:1 protection requires APS signaling

UPSR provides 1:1 protection

Given Solution Solution Solution

□ □ A single run of fiber between two repeaters constitutes a SDH multiplex section.

 \Box \Box OTNnr.k allows n wavelengths of rate r

Marks = Correct Answers _____ - Incorrect Answers _____ = ____