

- **Characteristics of Light**
- Optical components
- □ Fibers
- Sources
- □ Receivers,
- **Switches**

Electromagnetic Spectrum

Wavebands (Cont)											
			0		E	S	C	L	U		
770	910	12	60	13	60 14	60 15	30 15	16 65	25 1675		
	Band	Descriptor		Range (nm)							
				770-910							
	Ο	Original		1260-1360							
	E	Extended		1360-1460							
	S	Short Wavelength		1460-1530							
	С	Conventional		1530-1565							
	L	Long		1565-1625							
	U	Ultralong		1625-1675							

Optical Switches

Types of Fibers I

- Multimode Fiber: Core Diameter 50 or 62.5 µm
 Wide core ⇒ Several rays (mode) enter the fiber
 Each mode travels a different distance
- □ Single Mode Fiber: 10-µm core. Lower dispersion.

□ Step Index: Index takes a step jump

Graded Index: Core index decreases parabolically

Types of Fibers II

- □ Dispersion-Shifted Fiber: Zero dispersion at 1310nm EDFAs/DWDM systems operate at 1550 nm Special core profile ⇒ zero dispersion at 1550 nm
- □ Dispersion Flattened Fiber: 3 ps/nm/km 1300-1700nm Use 1300 nm now and 1550 in future Low dispersion causes four-wave mixing ⇒ DSF/DFF not used in DWDM systems

LOMMF

- Laser Optimized Multimode Fiber
- □ Supports 10 Gbps up to 300m with 850nm VCSEL
- Designed for central offices and storage area networks
- □ Easy upgrade from 10Mbps to 10Gbps
- **5**0 µm core diameter
- Limits Differential Mode Delay (DMD)
- □ Made by Lucent, Corning, Alcatel, New Focus, ...
- **Ref: NFOEC 2001, pp. 351-361**

Plastic Fiber

- Original fiber (1955) was plastic (organic polymer core rather than glass)
- □ 980µ core of PolyMethylMethyelAcrylate (PMMA)
- \Box Large Dia \Rightarrow Easy to connectorize, cheap installation
- Higher attenuation and Lower bandwidth than multimode fiber
- Can use 570-650 nm (visible light) LEDs and lasers (Laser pointers produce 650 nm)
- □ OK for short distance applications and home use
- □ Cheaper Devices: Plastic amplifiers, Plastic lasers

Hard Polymer Clad Silica Fiber

- \Box 200 micron glass core \Rightarrow Easy to join
- Uses same wavelength (650nm) as plastic fiber
- Lower attenuation and lower dispersion than plastic fiber
- Is 155 Mbps ATM Forum PHY spec for plastic and HPCF up to 100m.

- □ Two polarization modes may travel at different speeds
- □ Non-circular core may increase PMD
- High winds may induce time-varying PMD on aboveground cables
- Polarization Mode Dispersion (PMD) limits distances to square of the bit rate
 ⇒ 6400 km at 2.5 Gbps, 400 km at 10 Gbps, 25 km at 40 Gbps

Fiber Specifications

- Mode Field Diameter: 9.2 μm @1550nm /
- **Core** Eccentricity: < 0.6μm
- □ Fiber Non-Circularity: <1%
- Attenuation at different wavelengths: 0.25 dB/km @1550, 1.5 dB/km @1383
- Dispersion at different wavelengths: 5.5 ps/nm-km @1530, 13.8 ps/nm-km @1620
- □ Attenuation uniformity: No discontinuity > 0.1 dB
- □ Cutoff Wavelength: < 1300 nm. Multimode below this.
- □ Zero Dispersion Wavelength: <1440 nm
- **D** PMD < 0.1 ps/ \sqrt{km}
- **\Box** Effective Area: 65 μ m²
- □ Zero Dispersion Slope: 0.058 ps/nm2km

Optical Sources

- Light Emitting Diodes (LEDs)
- Lasers (Light amplifier using stimulated emission of radiation):
 - □ Fabry-Perot Lasers
 - Distributed Feedback Lasers (DFBs): long distance
 - □ Vertical Cavity Surface Emitting Laser (VCSEL)

Light Emitting Diodes (LEDs)

- □ Wide spectral width = $60 \text{ nm} \Rightarrow \text{Low bit rates}$
- $\Box \text{ Low Power: 1 mW } \Rightarrow \text{Short distances}$
- \Box Wide beam \Rightarrow Used with multimode fibers
- □ Rates up to 622 Mbps

LEDs vs Laser Diodes

Issue	LED	Laser Diode
Bias current	50-150	100-500 mA
	mA	
Power output	Low	High
Spectral Width	25-40 nm	2-5 nm
Rise/Fall Time	3-20 ns	0.5-2 ns
Bit Rate	Lower	Higher
Coupling	Medium	High
Efficiency		
Fiber Type	Multimode	Single-Mode
		(Generally)
Failure Rate	Lower	Higher
Safety	Safe	Unsafe if high power
Cost	Low	High

- □ Light split into two paths and then combined
- □ Index controlled \Rightarrow Phase at output is same or opposite \Rightarrow High or low amplitude
- □ Integrated Electro-absorption:
 - □ Absorption (loss) depends upon the voltage
 - □ Integrated: The center frequency changes with level ⇒ "Chirp" ⇒ Wider line width ⇒ Cheaper

Optical Detectors

- □ Avalanche Photodetector (APD):
 - □ Electronic amplifier built in
 - □ Better sensitivity than PIN detector
 - □ Temperature sensitive
 - Data rates to 2.5 Gbps
- P-I-N Photodiode: Wideband 800 1600 nm
 High data rate up to 100 Gbps

PIN vs Avalanche Photodiodes

Characteristics	PIN	APD
Responsivity	0.5-0.7 μA/μW	30-80 μA/μW
Bias Voltage	10 V	100+ V
Temperature Sensitivity	Less	More
Availability	Easy	Mostly 850 nm
Cost	Less	More

Semiconductor Optical Amplifiers (SOA)

- □ Erbium-Doped Fiber Amplifiers (EDFAs)
- □ Up to 30 dB amplification
- Flat response in 1535-1560 nm
 Fiber loss is minimum in this region
 Can be expanded to 40 nm width

- Stimulated Raman Scattering: pump photon gives up its energy to create another photon of reduced energy at a lower frequency.
- □ Less noise, more expensive, and less gain than EDFA
- $\Box Less noise \Rightarrow Critical for ultra-high bit rate systems$
- □ Wider band than EDFA using appropriate pump

OEO vs OOO Switches

- OEO:
 - Requires knowing data rate and format, e.g., 10 Gbps SONET
 - □ Can multiplex lower rate signals
 - \Box Cost/space/power increases linearly with data rate
- 000:
 - Data rate and format independent
 - \Rightarrow Data rate easily upgraded
 - □ Sub-wavelength mux/demux difficult
 - □ Cost/space/power relatively independent of rate
 - □ Can switch multiple ckts per port (waveband)
 - □ Issues: Wavelength conversion, monitoring

- 1. Higher Speed: 40 Gbps
- 2. More Wavelengths per fiber
- 3. Longer Distances

More Wavelengths

- □ C-Band (1535-1560nm), 1.6 nm (200 GHz) \Rightarrow 16 λ 's
- □ Three ways to increase # of wavelengths:
- Narrower Spacing: 100, 50, 25, 12.5 GHz Spacing limited by data rate. Cross-talk (FWM) Tight frequency management: Wavelength monitors, lockers, adaptive filters
- 2. Multi-band: C+L+S Band
- 3. Polarization Muxing

More Wavelengths (Cont)

- $\Box More wavelengths \Rightarrow More Power$
 - \Rightarrow Fibers with large effective area
 - \Rightarrow Tighter control of non-linearity's
 - \Rightarrow Adaptive tracking and reduction of polarization mode dispersion (PMD)

Ultra-Long Haul Transmission

- Strong out-of-band Forward Error Correction (FEC) Changes regeneration interval from 80 km to 300km Increases bit rate from 40 to 43 Gbps
- 2. Dispersion Management: Adaptive compensation
- 3. More Power: Non-linearity's ⇒ RZ coding Fiber with large effective area Adaptive PMD compensation
- 4. Distributed Raman Amplification: Less Noise than EDFA
- 5. Noise resistant coding: 3 Hz/bit by Optimight

- □ Non-zero dispersion shifted fiber for DWDM
- □ LED's for low speed/short distance. Lasers for high speed and long distance.
- DWDM systems use 1550 nm band due to EDFA
- □ Raman Amplifiers for long distance applications
- O/O/O switches are bit rate and data format independent

Homework 3

True or False?

ΤF

• Optical communication uses infrared light

□ □ C band is used commonly because of EDFAs.

 \Box \Box Graded index fiber has a lower modal dispersion than step index fiber

□ □Plastic fiber is cheaper than glass fibers

□ □ Dispersion shifted fiber is used in DWDM systems

□ □ If a signal can travel 1600 km at 10 Gbps, due to PMD it can travel 400 km at 40 Gbps

 \Box \Box Fiber becomes multimode above its cutoff wavelength

 \Box \Box Lasers are never used with multimode fibers

□ □ Raman amplifiers are used in ultra-long haul systems

• O/O/O switches are commonly used in today's networks

□ □ Most DWDM systems currently use 12.5 nm spacing

□ □ Ultra-long haul transmission requires precise dispersion management

Marks = Correct Answers _____ - Incorrect Answers _____ = ___