Protocols for Data Center Network Virtualization and Cloud Computing

Washington University in Saint Louis Saint Louis, MO 63130

Jain@cse.wustl.edu

Tutorial at 2014 IEEE 15th International Conference on High Performance Switching and Routing, Vancouver, Canada July 1, 2014

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

- 1. Part I: Network Virtualization
- 2. Part II: Data Center Bridging
- 3. Part III: Carrier Ethernet for Data Centers Break
- 4. Part IV: Virtual Bridging
- 5. Part V: LAN Extension and Partitioning

Part I: Network Virtualization

- 1. Virtualization
- 2. Why Virtualize?
- 3. Network Virtualization
- 4. Names, IDs, Locators
- 5. Interconnection Devices

Part II: Data Center Bridging

- 1. Residential vs. Data Center Ethernet
- 2. Review of Ethernet devices and algorithms
- 3. Enhancements to Spanning Tree Protocol
- 4. Virtual LANs
- 5. Data Center Bridging Extensions

Part III: Carrier Ethernet for Data Centers

- 1. Provider Bridges (PB) or Q-in-Q
- 2. Provider Backbone Bridges (PBB) or MAC-in-MAC
- 3. Provider Backbone Bridges with Traffic Engineering (PBB-TE)

Note: Although these technologies were originally developed for carriers, they are now used inside <u>multi-tenant</u> data centers (clouds)

Part IV: Virtual Bridging

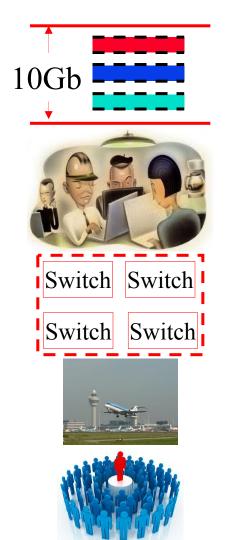
- 1. Virtual Bridges to connect virtual machines
- 2. IEEE Virtual Edge Bridging Standard
- 3. Single Root I/O Virtualization (SR-IOV)
- 4. Aggregating Bridges and Links: VSS and vPC
- 5. Bridges with massive number of ports: VBE

Part V: LAN Extension and Partitioning

- Transparent Interconnection of Lots of Links (TRILL)
- 2. Network Virtualization using GRE (NVGRE)
- 3. Virtual eXtensible LANs (VXLAN)
- 4. Stateless Transport Tunneling Protocol (STT)

Part I: Network Virtualization

- 1. Virtualization
- 2. Why Virtualize?
- 3. Network Virtualization
- 4. Names, IDs, Locators
- 5. Interconnection Devices


Virtualization

"Virtualization means that Applications can use a resource without any concern for where it resides, what the technical interface is, how it has been implemented, which platform it uses, and how much of it is available."

-Rick F. Van der Lans in Data Virtualization for Business Intelligence Systems

5 Reasons to Virtualize

- 1. Sharing: Break up a large resource Large Capacity or high-speed E.g., Servers
- 2. Isolation: Protection from other tenants E.g., Virtual Private Network
- 3. Aggregating: Combine many resources in to one, e.g., storage
- 4. Dynamics: Fast allocation, Change/Mobility, Follow the sun (active users) or follow the moon (cheap power)
- Ease of Management ⇒ Easy distribution, deployment, testing

©2014 Rai Jain

Virtualization in Computing

- **■** Storage:
 - \gt Virtual Memory \Rightarrow L1, L2, L3, ... \Rightarrow Recursive
 - > Virtual CDs, Virtual Disks (RAID), Cloud storage
- **□** Computing:
 - > Virtual Desktop \Rightarrow Virtual Server \Rightarrow Virtual Datacenter Thin Client \Rightarrow VMs \Rightarrow Cloud
- Networking: Plumbing of computing
 - Virtual Channels, Virtual LANs,
 Virtual Private Networks

Network Virtualization

- 1. Network virtualization allows tenants to form an overlay network in a multi-tenant network such that tenant can control:
 - 1. Connectivity layer: Tenant network can be L2 while the provider is L3 and vice versa
 - 2. Addresses: MAC addresses and IP addresses
 - 3. Network Partitions: VLANs and Subnets
 - 4. Node Location: Move nodes freely
- 2. Network virtualization allows providers to serve a large number of tenants without worrying about:
 - 1. Internal addresses used in client networks
 - 2. Number of client nodes
 - 3. Location of individual client nodes
 - 4. Number and values of client partitions (VLANs and Subnets)
- 3. Network could be a single physical interface, a single physical machine, a data center, a metro, ... or the global Internet.
- 4. Provider could be a system owner, an enterprise, a cloud provider, or a carrier.

Network Virtualization Techniques

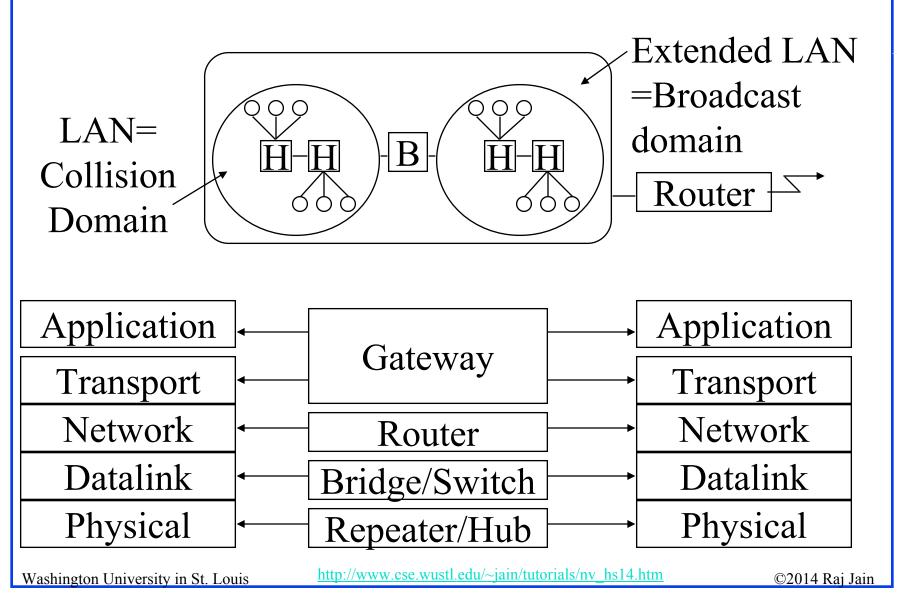
Entity	Partitioning	Aggregation/Extension/Interconnection**
NIC	SR-IOV	MR-IOV
Switch	VEB, VEPA	VSS, VBE, DVS, FEX
L2 Link	VLANs	LACP, Virtual PortChannels
L2 Network using L2	VLAN	PB (Q-in-Q), PBB (MAC-in-MAC), PBB-TE, Access-EPL, EVPL, EVP-Tree, EVPLAN
L2 Network using L3	NVO3,	MPLS, VPLS, A-VPLS, H-VPLS, PWoMPLS,
	VXLAN,	PWoGRE, OTV, TRILL, LISP, L2TPv3,
	NVGRE, STT	EVPN, PBB-EVPN
Router	VDCs, VRF	VRRP, HSRP
L3 Network using L1		GMPLS, SONET
L3 Network using	MPLS, GRE,	MPLS, T-MPLS, MPLS-TP, GRE, PW, IPSec
L3*	PW, IPSec	
Application	ADCs	Load Balancers

^{*}All L2/L3 technologies for L2 Network partitioning and aggregation can also be used for L3 network partitioning and aggregation, respectively, by simply putting L3 packets in L2 payloads.

^{**}The aggregation technologies can also be seen as partitioning technologies from the provider point of view.

Names, IDs, Locators

Name: John Smith


ID: 012-34-5678

Locator:

1234 Main Street Big City, MO 12345 USA

- Locator changes as you move, ID and Names remain the same.
- **Examples**:
 - Names: Company names, DNS names (Microsoft.com)
 - > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
 - > Locators: Wired phone numbers, IP addresses

Interconnection Devices

Interconnection Devices (Cont)

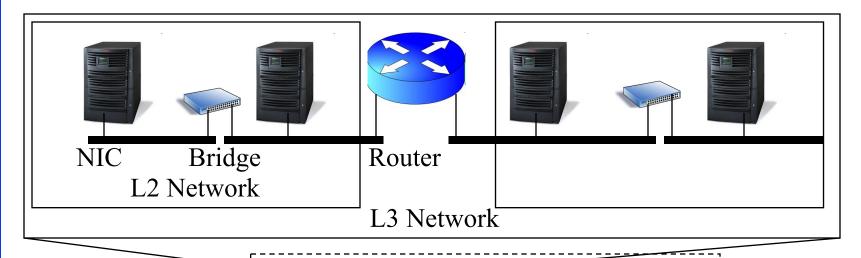
- □ Repeater: PHY device that restores data and collision signals
- **Hub**: Multiport repeater + fault detection and recovery
- Bridge: Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout "extended LAN."
- Router: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ Switch: Multiport bridge with parallel paths
- □ These are functions. Packaging varies.
- No CSMA/CD in 10G and up
- No CSMA/CD in practice now even at home or at 10 Mbps

Fallacies Taught in Networking Classes

- 1. Ethernet is a local area network (Local ≤ 2 km)
- 2. Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods.
- 3. Ethernet uses CSMA/CD.
- 4. Ethernet bridges use spanning tree for packet forwarding.
- 5. Ethernet frames are limited to 1518 bytes.
- 6. Ethernet does not provide any delay guarantees.
- 7. Ethernet has no congestion control.
- 8. Ethernet has strict priorities.

Ethernet has changed.

All of these are now false or are becoming false.


Summary of Part I

- 1. Virtualization allows applications to use resources without worrying about its location, size, format etc.
- 2. Ethernet's use of IDs as addresses makes it very easy to move systems in the data center \Rightarrow Keep traffic on the same Ethernet
- 3. Cloud computing requires Ethernet to be extended globally and partitioned for sharing by a very large number of customers who have complete control over their address assignment and connectivity
- 4. Many of the previous limitations of Ethernet have been overcome in the last few years.

Washington University in St. Louis

Levels of Network Virtualization

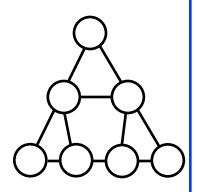
- □ Networks consist of: Network Interface Card (NIC) –
 L2 Links L2 Bridges L2 Networks L3 Links L3 Routers
 L3 Networks Data Centers Global Internet.
- Each of these needs to be virtualized

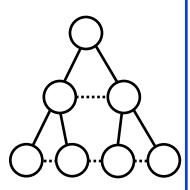
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

©2014 Raj Jain

Part II: Data Center Bridging

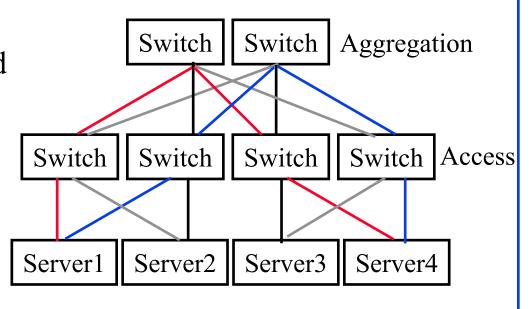

- 1. Residential vs. Data Center Ethernet
- 2. Review of Ethernet devices and algorithms
- 3. Enhancements to Spanning Tree Protocol
- 4. Virtual LANs
- 5. Data Center Bridging Extensions


Residential vs. Data Center Ethernet

Residential	Data Center/Cloud	
☐ Distance: up to 200m	□ No limit	
□ Scale:		
Few MAC addresses	Millions of MAC Addresses	
> 4096 VLANs	Millions of VLANs Q-in-Q	
Protection: Spanning tree	Rapid spanning tree,	
	(Gives 1s, need 50ms)	
Path determined by	Traffic engineered path	
spanning tree		
Simple service	Service Level Agreement.	
	Rate Control.	
Priority	Need per-flow/per-class QoS	
⇒ Aggregate QoS		
No performance/Error	Need performance/BER	
monitoring (OAM)		
Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm ©2014 Raj Jain		

Spanning Tree and its Enhancements

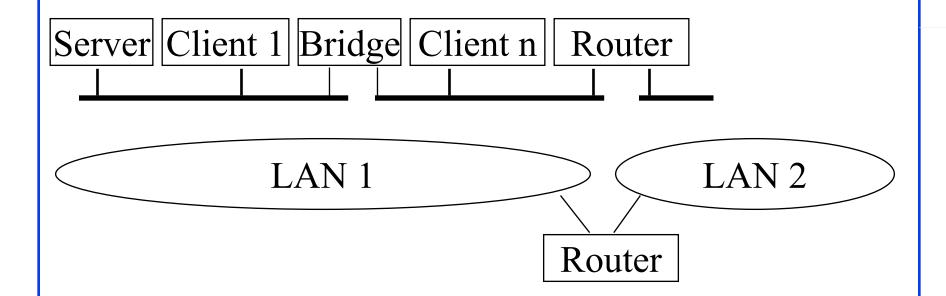
- Helps form a tree out of a mesh topology
- □ A topology change can result in 1 minute of traffic loss with STP ⇒ All TCP connections break
- Rapid Spanning Tree Protocol (RSTP)
 IEEE 802.1w-2001 incorporated in IEEE 802.1D2004
- □ One tree for all VLANs⇒ Common spanning tree
- Many trees
 ⇒ Multiple spanning tree (MST) protocol
 IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- One or more VLANs per tree.


IS-IS Protocol

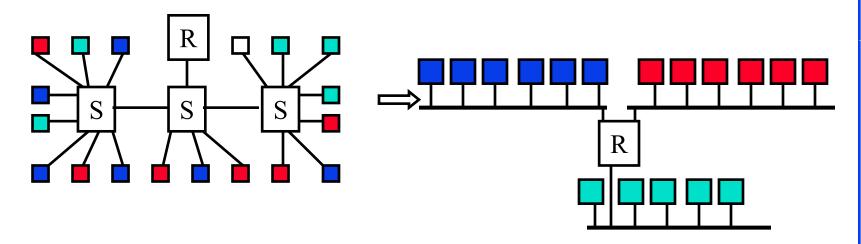
- □ Intermediate System to Intermediate System (IS-IS) is a protocol to build routing tables. Link-State routing protocol
 ⇒ Each nodes sends its connectivity (link state) information to all nodes in the network
- □ Dijkstra's algorithm is then used by each node to build its routing table.
- □ Similar to OSPF (Open Shortest Path First).
- OSPF is designed for IPv4 and then extended for IPv6. IS-IS is general enough to be used with any type of addresses
- □ OSPF is designed to run on the top of IP
 IS-IS is general enough to be used on any transport
 ⇒ Adopted by Ethernet

Ref: http://en.wikipedia.org/wiki/IS-IS
Washington University in St. Louis

Shortest Path Bridging

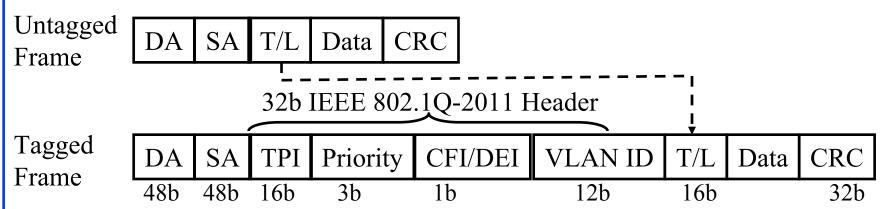

- □ IEEE 802.1aq-2012
- Allows all links to be used \Rightarrow Better CapEx
- □ IS-IS link state protocol (similar to OSPF) is used to build shortest path trees for each node to every other node within the SPB domain
- Equal-cost multi-path (ECMP) used to distribute load

Ref: http://en.wikipedia.org/wiki/Shortest Path Bridging


Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

What is a LAN?

- □ LAN = Single broadcast domain = Subnet
- No routing between members of a LAN
- Routing required between LANs


Virtual LAN

- □ Virtual LAN = Broadcasts and multicast goes only to the nodes in the virtual LAN
- LAN membership defined by the network manager ⇒ Virtual

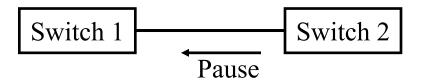
IEEE 802.1Q-2011 Tag

- Tag Protocol Identifier (TPI)
- □ Priority Code Point (PCP): 3 bits = 8 priorities 0..7 (High)
- □ Canonical Format Indicator (CFI): $0 \Rightarrow$ Standard Ethernet, $1 \Rightarrow$ IBM Token Ring format (non-canonical or non-standard)
- □ CFI now replaced by Drop Eligibility Indicator (DEI)
- □ VLAN Identifier (12 bits \Rightarrow 4095 VLANs)
- Switches forward based on MAC address + VLAN ID Unknown addresses are flooded.

Ref: Canonical vs. MSB Addresses, http://support.lexmark.com/index?page=content&id=HO1299&locale=en&userlocale=EN_US Ref: G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240

Washington University in St. Louis

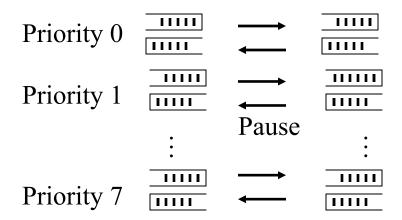
http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm


©2014 Raj Jain

Data Center Bridging (DCB)

- □ Goal: To enable storage traffic over Ethernet
- Four Standards:
 - Priority-based Flow Control (IEEE 802.1Qbb-2011)
 - > Enhanced Transmission Selection (IEEE 802.1Qaz-2011)
 - > Congestion Control (IEEE 802.1Qau-2010)
 - > Data Center Bridging Exchange (IEEE 802.1Qaz-2011)

Ref: M. Hagen, "Data Center Bridging Tutorial," http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf


Ethernet Flow Control: Pause Frame

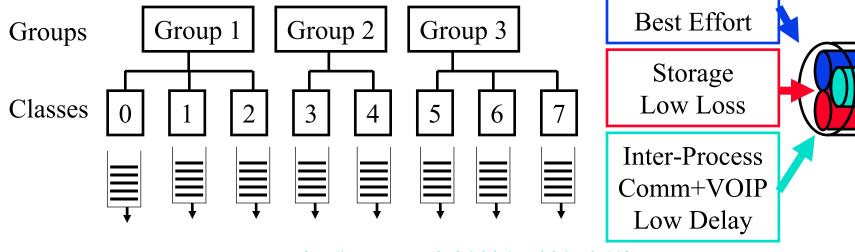
- □ Defined in IEEE 802.3x-1997. A form of on-off flow control.
- A receiving switch can stop the adjoining sending switch by sending a "Pause" frame.
 - Stops the sender from sending any further information for a time specified in the pause frame.
- □ The frame is addressed to a standard (well-known) multicast address. This address is acted upon but not forwarded.
- Stops all traffic. Causes congestion backup.

Ref: http://en.wikipedia.org/wiki/Ethernet flow control

Priority-based Flow Control (PFC)

- □ IEEE 802.1Qbb-2011
- □ IEEE 802.1Qbb-2011 allows any single priority to be stopped. Others keep sending

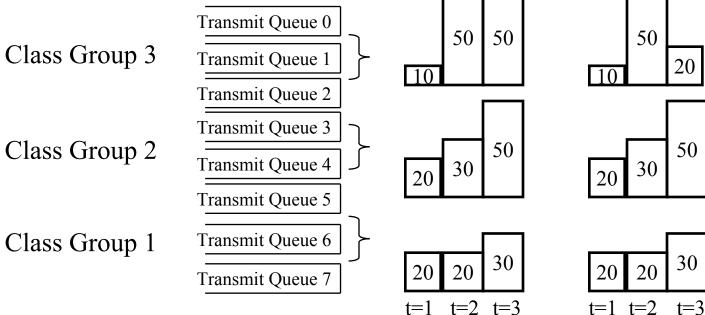
Ref: J. L. White, "Technical Overview of Data Center Networks," SNIA, 2013, http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pdf
Washington University in St. Louis


http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm
©2014 Rai Jain

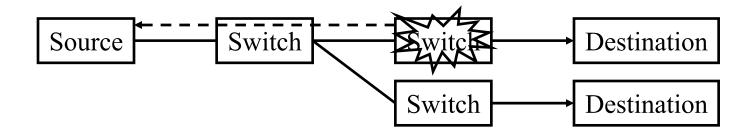
Enhanced Transmission Selection

- IEEE 802.1Qaz-2011
- Goal: Guarantee bandwidth for applications sharing a link
- Traffic is divided in to 8 classes (not priorities)
- The classes are grouped.

Washington University in St. Louis


Standard requires min 3 groups: 1 with PFC (Storage with low loss), 1 W/O PFC (LAN), 1 Strict Priority (Inter-process communication and VOIP with low latency LAN

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm


©2014 Rai Jain

- Bandwidth allocated per class group in 1% increment but 10% precision (±10% error).
- Max 75% allocated \Rightarrow Min 25% best effort
- □ Fairness within a group
- All unused bandwidth is available to all classes wanting more bandwidth. Allocation algorithm **not** defined.
- Example: Group 1=20%, Group 2=30%
 Washington University in St. Louis 1=20%, Group 2=30%
 http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

Quantized Congestion Notification (QCN)

- □ IEEE 802.1Qau-2010 Dynamic Congestion Notification
- A source quench message is sent by the congested switch direct to the source. The source reduces its rate for that flow.
- Sources need to keep per-flow states and control mechanisms
- □ Easy for switch manufacturers but complex for hosts.
 Implemented in switches but not in hosts ⇒ Not effective.
- □ The source may be a router in a subnet and not the real source
 ⇒ Router will drop the traffic. QCN does not help in this case.


Ref: *I. Pepelnjak*, "DCB Congestion Notification (802.1Qau)," http://blog.ipspace.net/2010/11/data-center-bridging-dcb-congestion.html
Washington University in St. Louis

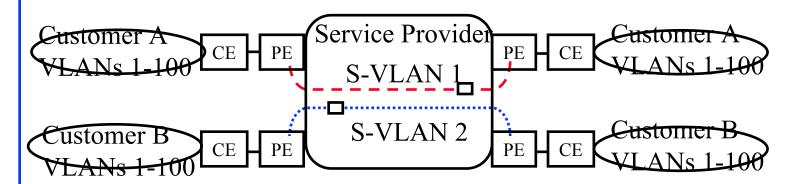
http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm
©2014 Raj Jain

DCBX

- Data Center Bridging eXchange, IEEE 802.1Qaz-2011
- Uses LLDP (Link Level Discovery Protocol) to negotiate quality metrics and capabilities for Priority-based Flow Control, Enhanced Transmission Selection, and Quantized Congestion Notification
- □ New TLV's
 - > Priority group definition
 - Group bandwidth allocation
 - > PFC enablement per priority
 - > QCN enablement
 - > DCB protocol profiles
 - > FCoE and iSCSI profiles

Summary of Part II

- 1. Ethernet's use of IDs as addresses makes it very easy to move systems in the data center \Rightarrow Keep traffic on the same Ethernet
- 2. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)
- 3. VLANs allow different non-trusting entities to share an Ethernet network
- 4. Data center bridging extensions reduce the packet loss by enhanced transmission selection and Priority-based flow control

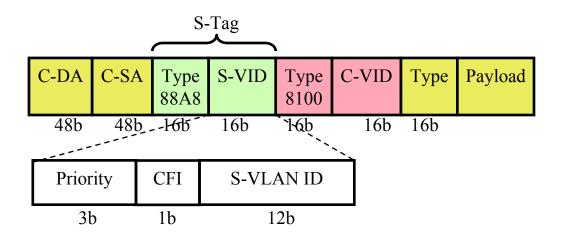

Part III: Carrier Ethernet for Data Centers

- 1. Provider Bridges (PB) or Q-in-Q
- 2. Provider Backbone Bridges (PBB) or MAC-in-MAC
- 3. Provider Backbone Bridges with Traffic Engineering (PBB-TE)

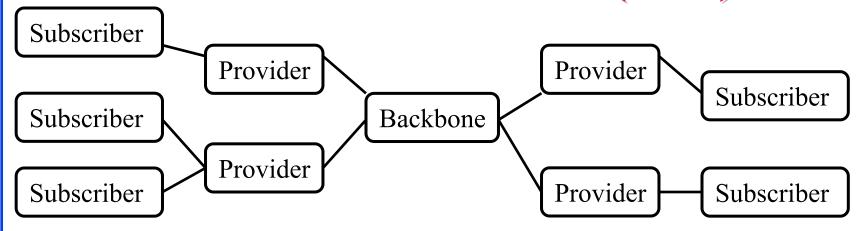
Note: Although these technologies were originally developed for carriers, they are now used inside <u>multi-tenant</u> data centers (clouds)

Ethernet Provider Bridge (PB)

- □ IEEE 802.1ad-2005 incorporated in IEEE 802.1Q-2011
- □ Problem: Multiple customers may have the same VLAN ID. How to keep them separate?
- Solutions:
 - 1. VLAN translation: Change customer VLANs to provider VLANs and back
 - 2. VLAN Encapsulation: Encapsulate customer frames


Ref: D. Bonafede, "Metro Ethernet Network," http://www.cicomra.org.ar/cicomra2/asp/TUTORIAL-%20Bonafede.pdf Ref: P. Thaler, et al., "IEEE 802.1Q," IETF tutorial, March 10 2013,

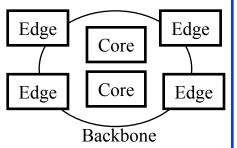
http://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-Thaler.pdf


Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

Provider Bridge (Cont)

- □ Q-in-Q Encapsulation: Provider inserts a service VLAN tag VLAN translation Changes VLANs using a table
- Allows 4K customers to be serviced. Total 16M VLANs
- 8 Traffic Classes using Differentiated Services Code Points (DSCP) for Assured Forwarding

Provider Backbone Network (PBB)


- □ Problem: Number of MAC addresses passing through backbone bridges is too large for all core bridge to remember Broadcast and flooded (unknown address) frames give unwanted traffic and security issues
- □ Solution: IEEE 802.1ah-2008 now in 802.1Q-2011
- Add new source/destination MAC addresses pointing to ingress backbone bridge and egress backbone bridge
 - ⇒Core bridges only know edge bridge addresses

Washington University in St. Louis

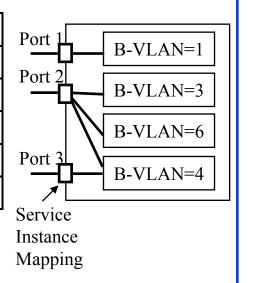
http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

MAC-in-MAC Frame Format

- Provider backbone edge bridges (PBEB) forward to other PBEB's and learn customer MAC addresses
 - ⇒ PB *core* bridges do not learn customer MACs
- B-DA = Destination backbone bridge address Determined by Customer Destination Address
- Backbone VLANs delimit the broadcast domains in the backbone

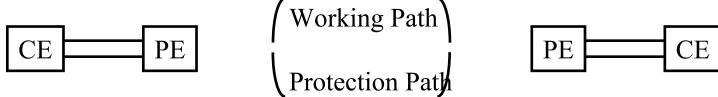
B-DA	B-SA	Type 88A8		Type 88E7	I-SID	C-DA	C-SA	Type 88A8		Type 8100	C-VID	Туре	Payload
48b	48b	16b	16b	16b	32b	48b	48b	16b	16b	16b	16b	16b	
		Ţ				I-Tag		7					

■ PBB Core switches forward based on Backbone Destination Bridge Address and Backbone-VLAN ID (60 bits) Similar to 802.1ad Q-in-Q. Therefore, same EtherType.


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

PBB Service Instance

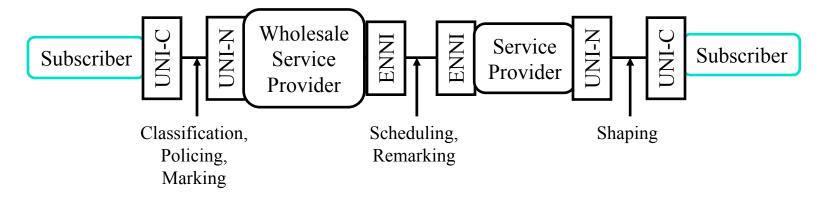

- Service instance ID (I-SID) indicates a specific flow
 - > All frames on a specific port, or
 - > All frames on a specific port with a specific *service* VLAN, or
 - All frames on a specific port with a specific service VLAN and a specific *customer* VLAN

SID	Definition	B-VLAN
1	Port 1	1
20	Port 2, S-VLAN=10	3
33	Port 2, S-VLAN=20	6
401	Port 2, S-VLAN=30, C-VLAN=100	4
502	Port 3, S-VLAN=40, C-VLAN=200	4

Connection Oriented Ethernet

- Connectionless: Path determined at forwarding
 - ⇒ Varying QoS
- Connection Oriented: Path determined at provisioning
 - ➤ Path provisioned by management ⇒ Deterministic QoS
 - □ No spanning tree, No MAC address learning,
 - Frames forwarded based on VLAN Ids and Backbone bridges addresses
 - □ Path not determined by customer MAC addresses and other customer fields ⇒ More Secure
 - Reserved bandwidth per EVC
 - ➤ Pre-provisioned Protection path ⇒ Better availability

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

PBB-TE

- □ Provider Backbone Bridges with Traffic Engineering (PBB-TE)
- □ IEEE 802.1Qay-2009 now in 802.1Q-2011
- □ Provides connection oriented P2P (E-*Line*) Ethernet service
- For PBB-TE traffic VLANs:
 - > Turn off MAC learning
 - > Discard frames with unknown address and broadcasts.
 - \Rightarrow No flooding
 - > Disable Spanning Tree Protocol.
 - > Add protection path switching for each direction of the trunk
- Switch forwarding tables are administratively populated using management
- Same frame format as with MAC-in-MAC. No change.

PBB-TE QoS

- \square Guarantees QoS \Rightarrow No need for MPLS or SONET/SDH
- UNI traffic is classified by Port, Service VLAN ID, Customer VLAN ID, priority, Unicast/Multicast
- □ UNI ports are *policed* \Rightarrow Excess traffic is dropped No policing at NNI ports. Only remarking, if necessary.
- Traffic may be marked and remarked at both UNI and NNI

Ethernet Tagged Frame Format Evolution

Original Ethernet

C-DA C-SA Type Payload

□ IEEE 802.1Q VLAN

C-DA C-SA Type 8100 C-VID Type Payload

□ IEEE 802.1ad PB

C-DA	C-SA	Type	S-VID	Type	C-VID	Type	Payload
		88A8		8100			

□ IEEE 802.1ah PBB or 802.1Qay PBB-TE

B-DA	B-SA	Type	B-VID	Type	I-SID	C-DA	C-SA	Type	S-VID	Type	C-VID	Type	Payload	l
		88A8		88E7				88A8		8100				ı

Tag Type	Value
Customer VLAN	8100
Service VLAN or Backbone VLAN	88A8
Backbone Service Instance	88E7

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

Comparison of Technologies

	Basic	MPLS	PB	PBB-TE
	Ethernet			
Resilience	No	Protection	SPB/LAG	Protection
		Fast Reroute		Fast Reroute
Security	No	Circuit	VLAN	Circuit
		Based		Based
Multicast	Yes	Inefficient	Yes	No. P2P only
QoS	Priority	Diffserve	Diffserve+	Diffserve+
			Guaranteed	Guaranteed
Legacy	No	Yes (PWE3)	No	No
Services				
Traffic	No	Yes	No	Yes
Engineering				
Scalability	Limited	Complex	Q-in-Q	Q-in-Q+
				Mac-in-MAC
Cost	Low	High	Medium	Medium
OAM	No	Some	Yes	Yes

Ref: Bonafede

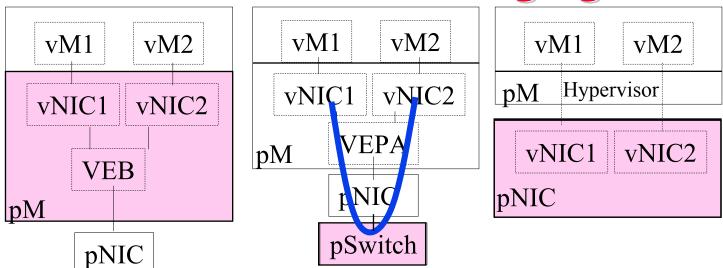
Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

Summary of Part III

- 1. PB Q-in-Q extension allows Internet/Cloud service providers to allow customers to have their own VLAN IDs
- 2. PBB MAC-in-MAC extension allows customers/tenants to have their own MAC addresses and allows service providers to not have to worry about them in the core switches
- 3. PBB allows very large Ethernet networks spanning over several backbone carriers
- 4. PBB-TE extension allows connection oriented Ethernet with QoS guarantees and protection

Part IV: Virtual Bridging

- 1. Virtual Bridges to connect virtual machines
- 2. IEEE Virtual Edge Bridging Standard
- 3. Single Root I/O Virtualization (SR-IOV)
- 4. Aggregating Bridges and Links: VSS and vPC
- 5. Bridges with massive number of ports: VBE

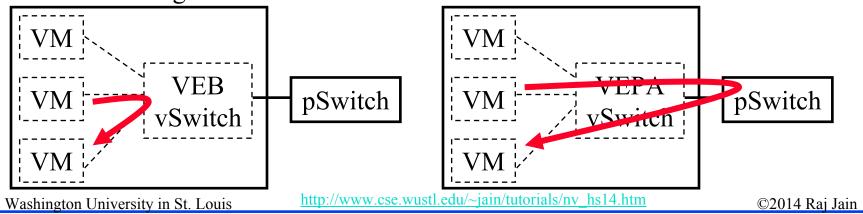

vSwitch

- Problem: Multiple VMs on a server need to use one physical network interface card (pNIC)
- Solution: Hypervisor creates multiple vNICs connected via a virtual switch (vSwitch)
- pNIC is controlled by hypervisor and not by any individual VM
- **Notation**: From now on prefixes p and v refer to physical and virtual, respectively. For VMs only, we use upper case V.

Ref: G. Santana, "Datacenter Virtualization Fundamentals," Cisco Press, 2014, ISBN: 1587143240 Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

Virtual Bridging

Where should most of the tenant isolation take place?


- 1. VM vendors: S/W NICs in Hypervisor w Virtual Edge Bridge (VEB)(overhead, not ext manageable, not all features)
- 2. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade)
- 3. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

Virtual Edge Bridge

- □ IEEE 802.1Qbg-2012 standard for vSwitch
- Two modes for vSwitches to handle *local* VM-to-VM traffic:
 - > Virtual Edge Bridge (VEB): Switch internally.
 - > Virtual Ethernet Port Aggregator (VEPA): Switch externally
- □ VEB
 - could be in a hypervisor or network interface card
 - > may learn or may be configured with the MAC addresses
 - > VEB may participate in spanning tree or may be configured\
 - Advantage: No need for the external switch in some cases

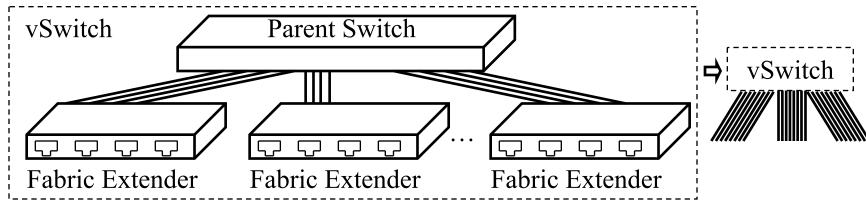
Virtual Ethernet Port Aggregator (VEPA)

- □ VEPA simply relays all traffic to an external bridge
- External bridge forwards the traffic. Called "*Hairpin Mode*." Returns local VM traffic back to VEPA Note: Legacy bridges do not allow traffic to be sent back to the incoming port within the same VLAN
- **□ VEPA Advantages:**
 - > Visibility: External bridge can see VM to VM traffic.
 - > Policy Enforcement: Better. E.g., firewall
 - \triangleright Performance: Simpler vSwitch \Rightarrow Less load on CPU
 - Management: Easier
- Both VEB and VEPA can be implemented on the same NIC in the same server and can be cascaded.

Ref: HP, "Facts about the IEEE 802.1Qbg proposal," Feb 2011, 6pp.,

http://h20000.www2.hp.com/bc/docs/support/SupportManual/c02877995/c02877995.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

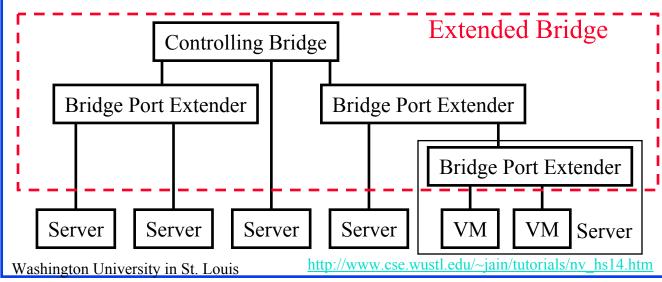

Combining Bridges

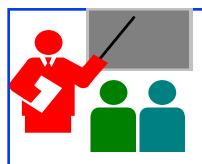
□ Problem:

- > Number of VMs is growing very fast
- > Need switches with very large number of ports
- > Easy to manage one bridge than 100 10-port bridges
- ➤ How to make very large switches ~1000 ports?
- □ Solutions: Multiple pSwitches to form a single switch
 - 1. Fabric Extension (FEX)
 - 2. Virtual Bridge Port Extension (VBE)

Fabric Extenders

- Fabric extenders (FEX) consists of ports that are managed by a remote parent switch
- 12 Fabric extenders, each with 48 host ports, connected to a parent switch via 4-16 10 Gbps interfaces to a parent switch provide a virtual switch with 576 host ports
 - ⇒ Chassis Virtualization
- All software updates/management, forwarding/control plane is managed centrally by the parent switch.
- A FEX can have an active and a standby parent.


Ref: P. Beck, et al., "IBM and Cisco: Together for a World Class Data Center," IBM Red Book, 2013, 654 pp., ISBN: 0-7384-3842-1, http://www.redbooks.ibm.com/redbooks/pdfs/sg248105.pdf


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

Virtual Bridge Port Extension (VBE)

- □ IEEE 802.1BR-2012 standard for fabric extender functions
- Specifies how to form an extended bridge consisting of a controlling bridge and Bridge Port Extenders
- Extenders can be cascaded.
- Some extenders may be in a vSwitch in a server hypervisor.
- □ All traffic is relayed by the controlling bridge
 - \Rightarrow Extended bridge is a bridge.

Summary of Part IV

- 1. Network virtualization includes virtualization of NICs, Bridges, Routers, and L2 networks.
- 2. Virtual Edge Bridge (VEB) vSwitches switch internally while Virtual Ethernet Port Aggregator (VEPA) vSwitches switch externally.
- 3. Fabric Extension and Virtual Bridge Extension (VBE) allows creating switches with a large number of ports using port extenders (which may be vSwitches)

Part V: LAN Extension and Partitioning

- Transparent Interconnection of Lots of Links (TRILL)
- 2. Network Virtualization using GRE (NVGRE)
- 3. Virtual eXtensible LANs (VXLAN)
- 4. Stateless Transport Tunneling Protocol (STT)

Challenges of LAN Extension

- **Broadcast storms**: Unknown and broadcast frames may create excessive flood
- □ Loops: Easy to form loops in a large network.

- □ STP Issues:
 - > High spanning tree diameter: More than 7.
 - Root can become bottleneck and a single point of failure
 - Multiple paths remain unused
- ☐ **Tromboning**: Dual attached servers and switches generate excessive cross traffic
- Security: Data on LAN extension must be encrypted

Core

Aggregation

Access

Server

Access

Server

Core

Aggregation

Access

Server

Core

Aggregation

Access

Server

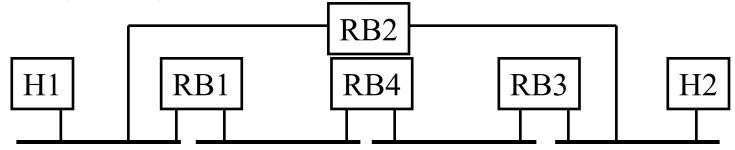
Core

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

TRILL

- □ Transparent Interconnection of Lots of Links
- □ Allows a large campus to be a single extended LAN
- LANs allow free mobility inside the LAN but:
 - > Inefficient paths using Spanning tree
 - > Inefficient link utilization since many links are disabled
 - > Inefficient link utilization since multipath is not allowed.
 - ➤ Unstable: small changes in network ⇒ large changes in spanning tree
- □ IP subnets are not good for mobility because IP addresses change as nodes move and break transport connections, but:
 - > IP routing is efficient, optimal, and stable
- □ Solution: Take the best of both worlds
 - ⇒ Use MAC addresses and IP routing


Ref: RFCs 5556, 6325, 6326, 6327, 6361, 6439

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

TRILL Architecture

- □ Routing Bridges (RBridges) encapsulate L2 frames and route them to destination RBridges which decapsulate and forward
- ☐ Header contains a hop-limit to avoid looping
- RBridges run IS-IS to compute pair-wise optimal paths for unicast and distribution trees for multicast
- RBridge learn MAC addresses by source learning and by exchanging their MAC tables with other RBridges
- Each VLAN on the link has one (and only one) designated RBridge using IS-IS election protocol

Ref: R. Perlman, "RBridges: Transparent Routing," Infocom 2004

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

TRILL Encapsulation Format

Outer Header TRILL header Original 802.1Q packet

Version	Res.	Multi- Destination	Options Length	Hops to Live	Egress RBridge	Ingress RBridge	Options
<u>2b</u>	2b	1b	5b	6b	16b	16b	

- For outer headers both PPP and Ethernet headers are allowed. PPP for long haul.
- Outer Ethernet header can have a VLAN ID corresponding to the VLAN used for TRILL.
- Priority bits in outer headers are copied from inner VLAN

TRILL Features

- □ Transparent: No change to capabilities. Broadcast, Unknown, Multicast (BUM) support. Autolearning.
- Zero Configuration: RBridges discover their connectivity and learn MAC addresses automatically
- ☐ Hosts can be multi-homed
- VLANs are supported
- Optimized route
- No loops
- □ Legacy bridges with spanning tree in the same extended LAN

TRILL: Summary

- TRILL allows a large campus to be a single Extended LAN
- □ Packets are encapsulated and routed using IS-IS routing

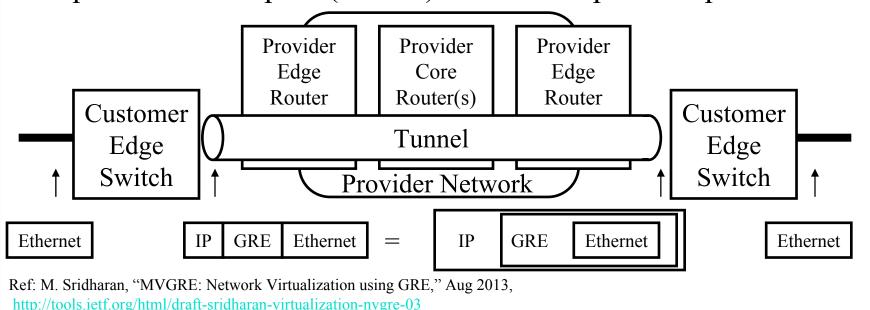
- Generic Routing Encaptulation (RFC 1701/1702)
- Generic \Rightarrow X over Y for any X or Y
- Over IPv4, GRE packets use a protocol type of 47
- Optional Checksum, Loose/strict Source Routing, Key
- Key is used to authenticate the source

Washington University in St. Louis

- Recursion Control: # of additional encapsulations allowed. $0 \Rightarrow$ Restricted to a single provider network \Rightarrow end-to-end
- Offset: Points to the next source route field to be used
- IP or IPSec are commonly used as delivery headers

Delivery Header | GRE Header |

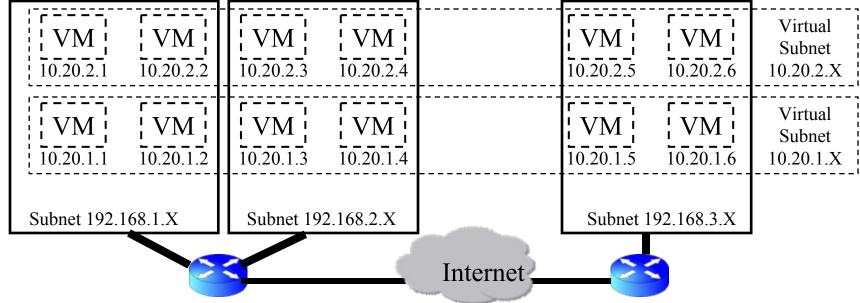
Check- sum Present	Routing Present	Key Present	-	Source	Recursion Control	Flags	Ver. #	Prot. Type		Check sum	Key	Seq. #	Source Routing List
1b	1b	1b	1b	1b	3b	5b	3b	16b	16b	16b	32b	32b	Variable
Washingto	n University	y in St. Lou	is	http://v	http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm ©2014 Rai Jain							4 Rai Iain	


Payload

NVGRE

Network Virtualization using GRE

Washington University in St. Louis


- ⇒ Ethernet over GRE over IP (point-to-point)
- A unique 24-bit Virtual Subnet Identifier (VSID) is used as the lower 24-bits of GRE key field \Rightarrow 2²⁴ tenants can share
- Unique IP multicast address is used for BUM (Broadcast, Unknown, Multicast) traffic on each VSID
- Equal Cost Multipath (ECMP) allowed on point-to-point tunnels

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

NVGRE (Cont)

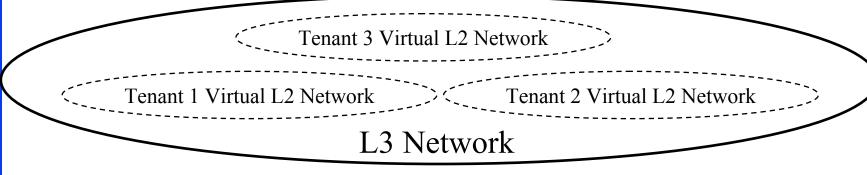
- ☐ In a cloud, a pSwitch or a vSwitch can serve as tunnel endpoint
- □ VMs need to be in the same VSID to communicate
- □ VMs in different VSIDs can have the same MAC address
- □ Inner IEEE 802.1Q tag, if present, is removed.

Ref: Emulex, "NVGRE Overlay Networks: Enabling Network Scalability," Aug 2012, 11pp., http://www.emulex.com/artifacts/074d492d-9dfa-42bd-9583-69ca9e264bd3/elx_wp_all_nvgre.pdf

washington University in St. Louis http://www.ese.wustr.edu/~jain/tutorials/nv_hs14.htm

VXLAN

- □ Virtual eXtensible Local Area Networks (VXLAN)
- L3 solution to isolate multiple tenants in a data center (L2 solution is Q-in-Q and MAC-in-MAC)
- Developed by VMware. Supported by many companies in IETF NVO3 working group
- □ Problem:
 - > 4096 VLANs are not sufficient in a multi-tenant data center
 - > Tenants need to control their MAC, VLAN, and IP address assignments \Rightarrow Overlapping MAC, VLAN, and IP addresses
 - ➤ Spanning tree is inefficient with large number of switches
 ⇒ Too many links are disabled
 - > Better throughput with IP equal cost multipath (ECMP)


Ref: M. Mahalingam, "VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks," draft-mahalingam-dutt-dcops-vxlan-04, May, 8, 2013, http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-04

Washington University in St. Louis

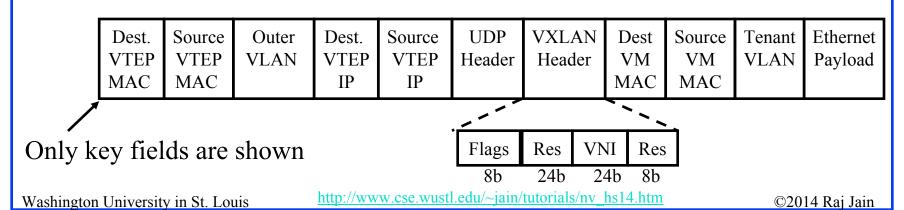
http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

VXLAN Architecture

- □ Create a virtual L2 overlay (called VXLAN) over L3 networks
- □ 2²⁴ VXLAN Network Identifiers (VNIs)
- Only VMs in the same VXLAN can communicate
- □ vSwitches serve as VTEP (VXLAN Tunnel End Point).
 - \Rightarrow Encapsulate L2 frames in UDP over IP and send to the destination VTEP(s).
- Segments may have overlapping MAC addresses and VLANs but L2 traffic never crosses a VNI

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

VXLAN Deployment Example


Example: Three tenants. 3 VNIs. 4 Tunnels for unicast.

+ 3 tunnels for multicast (not shown)

VXLAN Encapsulation Format

- Outer VLAN tag is optional.
 Used to isolate VXLAN traffic on the LAN
- □ Source VM ARPs to find Destination VM's MAC address. All L2 multicasts/unknown are sent via IP multicast. Destination VM sends a standard IP unicast ARP response.
- □ Destination VTEP learns inner-Src-MAC-to-outer-src-IP mapping
 ⇒ Avoids unknown destination flooding for returning responses

VXLAN Encapsulation Format (Cont)

- □ IGMP is used to prune multicast trees
- □ 7 of 8 bits in the flag field are reserved. I flag bit is set if VNI field is valid
- UDP source port is a hash of the inner MAC header
 ⇒ Allows load balancing using Equal Cost Multi Path using L3-L4 header hashing
- □ VMs are unaware that they are operating on VLAN or VXLAN
- VTEPs need to learn MAC address of other VTEPs and of client VMs of VNIs they are handling.
- A VXLAN gateway switch can forward traffic to/from non-VXLAN networks. Encapsulates or decapsulates the packets.

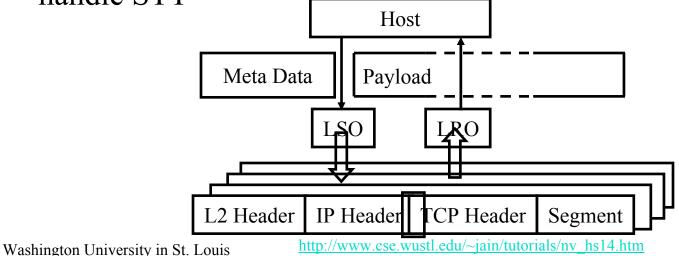
VXLAN: Summary

- VXLAN solves the problem of multiple tenants with overlapping MAC addresses, VLANs, and IP addresses in a cloud environment.
- A server may have VMs belonging to different tenants
- □ No changes to VMs. Hypervisors responsible for all details.
- □ Uses UDP over IP encapsulation to isolate tenants

Stateless Transport Tunneling Protocol (STT)

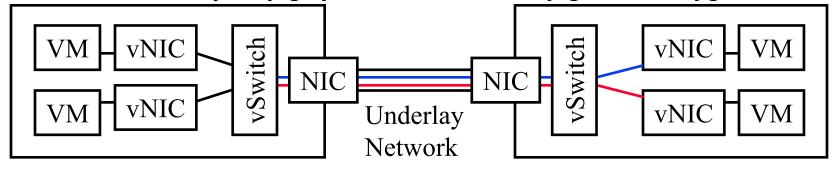
- Ethernet over TCP-Like over IP tunnels. GRE, IPSec tunnels can also be used if required.
- □ Tunnel endpoints may be inside the end-systems (vSwitches)
- Designed for large storage blocks 64kB. Fragmentation allowed.
- Most other overlay protocols use UDP and disallow fragmentation ⇒ Maximum Transmission Unit (MTU) issues.
- □ TCP-Like: Stateless TCP ⇒ Header identical to TCP (same protocol number 6) but no 3-way handshake, no connections, no windows, no retransmissions, no congestion state
 ⇒ Stateless Transport (recognized by standard port number).
- Broadcast, Unknown, Multicast (BUM) handled by IP multicast tunnels

Ref: B. Davie and J. Gross, "A Stateless Transport Tunneling Protocol for Network Virtualization (STT)," Apr 2014, http://tools.ietf.org/html/draft-davie-stt-06


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

LSO and LRO


- □ Large Send Offload (LSO): Host hands a large chunk of data to NIC and meta data. NIC makes MSS size segments, adds checksum, TCP, IP, and MAC headers to each segment.
- □ Large Receive Offload (LRO): NICs attempt to reassemble multiple TCP segments and pass larger chunks to the host. Host does the final reassembly with fewer per packet operations.
- □ STT takes advantage of LSO and LRO features, if available.

Using a protocol number other than 6 will not allow LSO/LRO to handle STT

STT Optimizations

- □ Large data size: Less overhead per payload byte
- □ Context ID: 64-bit tunnel end-point identifier
- Optimizations:
 - > 2-byte padding is added to Ethernet frames to make its size a multiple of 32-bits.
 - ➤ Source port is a hash of the inner header ⇒ ECMP with each flow taking different path and all packets of a flow taking one path
- No protocol type field \Rightarrow Payload assumed to be Ethernet, which can carry any payload identified by protocol type.

75

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

STT Frame Format

- □ 16-Bit MSS \Rightarrow 2¹⁶ B = 64K Byte maximum
- L4 Offset: From the of STT header to the start of encapsulated L4 (TCP/UDP) header ⇒ Helps locate payload quickly
- □ Checksum Verified: Checksum covers entire payload and valid
- □ Checksum Partial: Checksum only includes TCP/IP headers

IP	TCP-Like	STT	STT
Header	Header	Header	Payload

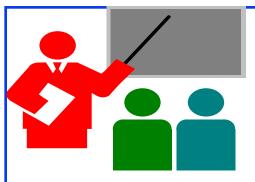
Version	Flag	gs L4 Offs	et Reserved	Maximu Segme Size	nt Code	VLAN ID Valid	Context ID	VLAN ID	Padding
8b	8b	8b	8b	<u>1</u> 6b	3b	1b	64b	12b	16b
Checks Verific		Checksum Partial	IP Version IPv4	TCP Payload	Reserved				
1b		1b	1b	1b	4b				
Washington	Unive	rsity in St. Lou	is <u>httr</u>	o://www.cse.	wustl.edu/~jain	<u>/tutorials/nv_h</u>	s14.htm		©2014 Raj Jai

TCP-Like Header in STT

- Destination Port: Standard to be requested from IANA
- Source Port: Selected for efficient ECMP
- □ Ack Number: STT payload sequence identifier. Same in all segments of a payload
- Sequence Number (32b): Length of STT Payload (16b) + offset of the current segment (16b) ⇒ Correctly handled by NICs with Large Receive Offload (LRO) feature
- No acks. STT delivers partial payload to higher layers.
- Higher layer TCP can handle retransmissions if required.
- Middle boxes will need to be programmed to allow STT pass through

Source Port (Random)	Dest. Port (Standard)	STT Payload Length Sequence Nu	Segment Offset umber*	Payload Sequence # <i>Ack Number</i> *	Data Offset	
16b	16b	16b+16b *Di		32b hifferent meaning than	16b TCP	-

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm


STT Summary

- STT solves the problem of *efficient* transport of large 64 KB storage blocks
- Uses Ethernet over TCP-Like over IP tunnels
- Designed for software implementation in hypervisors

Summary of Part V

- 1. TRILL allows Ethernet to span a large campus using IS-IS encapsulation
- 2. NVGRE uses Ethernet over GRE for L2 connectivity.
- 3. VXLAN uses Ethernet over UDP over IP
- 4. STT uses Ethernet over TCP-like stateless protocol over IP.

Overall Summary

- 1. Virtualization allows applications to use resources without worrying about its location, size, format etc.
- 2. Ethernet's use of IDs as addresses makes it very easy to move systems in the data center \Rightarrow Keep traffic on the same Ethernet
- 3. Cloud computing requires Ethernet to be extended globally and partitioned for sharing by a very large number of customers who have complete control over their address assignment and connectivity and requires rapid provisioning of a large number of virtual NICs and switches
- 4. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)

Overall Summary (Cont)

- 5. Data center bridging extensions reduce the packet loss by enhanced transmission selection and Priority-based flow control. Make Ethernet suitable for storage traffic.
- 6. PB Q-in-Q extension allows Internet/Cloud service providers to allow customers to have their own VLAN IDs
- 7. PBB MAC-in-MAC extension allows customers/tenants to have their own MAC addresses and allows service providers to not have to worry about them in the core switches
- 8. PBB-TE extension allows connection oriented Ethernet with QoS guarantees and protection
- 9. Virtual Edge Bridge (VEB) vSwitches switch internally while Virtual Ethernet Port Aggregator (VEPA) vSwitches switch externally.

Washington University in St. Louis

Overall Summary (Cont)

- 10. SR-IOV technology allows multiple virtual NICs via PCI and avoids the need for internal vSwitch.
- 11. Fabric Extension and Virtual Bridge Extension (VBE) allows creating switches with a large number of ports using port extenders (which may be vSwitches)
- 12. TRILL allows Ethernet to span a large campus using IS-IS encapsulation
- 13. NVGRE uses Ethernet over GRE for L2 connectivity.
- 14. VXLAN uses Ethernet over UDP over IP
- 15. STT uses Ethernet over TCP-like stateless protocol over IP.

Acronyms

□ ADC Application Delivery Controller

□ API Application Programming Interface

□ ARP Address Resolution Protocol

□ BER Bit Error Rate

□ BUM Broadcast, Unknown, Multicast

CapEx Capital Expenditure

□ CD Compact Disk

□ CE Customer Edge

CFI Canonical Format Indicator

CFM Connectivity Fault Management

CPU Central Processing Unit

□ CRC Cyclic Redundancy Check

□ CSMA/CD Carrier Sense Multiple Access with Collision Detection

DA Destination Address

DCB Data Center Bridging

DCBX Data Center Bridging Exchange

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

□ DEI Drop Eligibility Indicator

DNS Domain Name Service

DSCP Differentiated Services Code Points

DVS Distributed Virtual Switch

ECMP Equal-cost multi-path

■ ENNI Ethernet Network to Network Interface

■ EPL Ethernet Private Line

■ ETS Enhanced Transmission Service

■ EVC Ethernet Virtual Channel

EVP-Tree Ethernet Virtual Private Tree

■ EVPL Ethernet Virtual Private Line

EVPLAN Ethernet Virtual Private LAN

■ EVPN Ethernet Virtual Private Network

□ FCoE Fibre Channel over Ethernet

□ FEX Fabric Extension

□ GB Giga Byte

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

GMPLS Generalized Multi-Protocol Label Switching

□ GRE Generic Routing Encapsulation

HSRP Hot Standby Router Protocol

■ IANA Internet Addressing and Naming Authority

□ ID Identifier

□ IEEE Institution of Electrical and Electronic Engineers

□ IETF Internet Engineering Task Force

□ IGMP Internet Group Multicast Protocol

□ IO Input/Output

□ IP Internet Protocol

□ IPSec Secure IP

□ IPv4 Internet Protocol Version 4

□ IPv6 Internet Protocol Version 6

□ IS-IS Intermediate System to Intermediate System

□ iSCSI Internet Small Computer Storage Interconnect

□ iSCSI Internet Small Computer Storage Interconnect

uis

□ kB Kilo Byte

□ LACP Link Aggregation Control Protocol

□ LAN Local Area Network

LISP Locator-ID Split Protocol

□ LLDP Link Layer Discovery Protocol

□ LRO Large Receive Offload

LSO Large Send Offload

MAC Media Access Control

MDI Media Dependent Interface

MPLS Multi-Protocol Label Switching

■ MR-IOV Multi-Root I/O Virtualization

MSB Most Significant Byte

MSS Maximum Segment Size

MST Multiple spanning tree

MSTP Multiple Spanning Tree Protocol

MTU Maximum Transmission Unit

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

MVGRE Network Virtualization Using GRE

□ NIC Network Interface Card

□ NNI Network-to-Network Interface

NVO3 Network Virtualization Overlay using L3

OAM Operation, Administration, and Management

OpEx
Operation Expenses

OSPF Open Shortest Path First

OTV Overlay Transport Virtualization

PB Provider Bridge

PBB-TE Provider Backbone Bridge with Traffic Engineering

□ PBB Provider Backbone Bridge

□ PBEB Provider Backbone Edge Bridge

PCI-SIG PCI Special Interest Group

□ PCI Peripheral Component Interconnect

□ PCIe PCI Express

□ PCP Priority Code Point

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

87

□ PE Provider Edge

PF Physical Function

PFC Priority-based Flow Control

PHY Physical Layer

pM Physical Machine

pNIC Physical Network Interface Card

PPP Point-to-Point Protocol

pSwitch Physical Switch

□ PW Pseudo wire

PWoGRE Pseudo wire over Generic Routing Encapsulation

□ PWoMPLS Pseudo wire over Multi Protocol Label Switching

QCN Quantized Congestion Notification

QoS Quality of Service

□ RAID Redundant Array of Independent Disks

□ RBridge Routing Bridge

□ RFC Request for Comments

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

RSTP Rapid Spanning Tree Protocol

□ SA Source Address

SDH Synchronous Digital Hierarchy

□ SID Service Identifier

SNIA Storage Network Industry Association

SONET Synchronous Optical Network

□ SPB Shortest Path Bridging

□ SR-IOV Single Root I/O Virtualization

□ STP Spanning Tree Protocol

STT Stateless Transport Tunneling Protocol

□ TCP Transmission Control Protocol

□ TE Traffic Engineering

□ TLV Type-Length-Value

□ TP Transport Protocol

□ TPI Tag Protocol Identifier

□ TRILL Transparent Interconnection of Lots of Links

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv hs14.htm

□ TV Television

UCA
Use Customer Address

UDP User Datagram Protocol

UNI User Network Interface

VBE Virtual Bridge Port Extension

□ VDC Virtual Device Contexts

□ VEB Virtual Edge Bridge

□ VEM Virtual Ethernet Module

□ VEPA Virtual Ethernet Port Aggregator

□ VF Virtual Function

□ VID VLAN ID

VLAN Virtual LAN

VM Virtual Machine

VNI Virtual Network ID

vNIC Virtual Network Interface Card

VoD Video on Demand

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

□ VOIP Voice over IP

□ vPC Virtual Port Channels

VPLS Virtual Private LAN Service

■ VPN Virtual Private Network

VRF Virtual Routing and Forwarding

□ VRRP Virtual Router Redundancy Protocol

VSID Virtual Subnet Identifier

□ VSM Virtual Switch Module

VSS Virtual Switch System

vSwitch Virtual Switch

VTEP Virtual Tunnel End Point

VXLAN Virtual Extensible LAN