

- 1. Trends in Networking
- Metro Networks: 1G and 10G Ethernet, Resilient Packet Ring, SONET/SDH vs Ethernet, Next Gen SDH
- 3. Access Networks: xDSL, Cable Modems, Broadband Wireless Access, WiMAX, Optical Wireless, Satellite, Passive Optical Networks

Trend: Back to ILECs

1. CLECs to ILECs

ILEC: Slow, steady, predictable.

CLEC: Aggressive, Need to build up fast

New networks with newest technology

- No legacy issues
- 2. Back to Voice
 - CLECs wanted to *start* with data
 - ILECs want to *migrate* to data

 \Rightarrow Equipment that support voice circuits but allow packet based (hybrids) are more important than those that allow only packet based

Core Networks

- □ Higher Speed/ λ : 10 Gbps to 40 Gbps to 160 Gbps
- □ Longer Distances/Regens: 600 km to 6000 km
- **\Box** More Wavelengths: 16 λ 's to 160 λ 's

- □ Past: Shared media in LANs. Point to point in WANs.
- **Today:** No media sharing in LANs
 - Datalink protocols limited to frame formats
 - □ No distance limitations due to MAC. Only Phy.
- □ 10 GbE over 40 km without repeaters
- **U** Ethernet End-to-end.
- □ Ethernet carrier access service:\$50/mo 100Mbps

- ❑ Hype Cycles of Technologies
 ⇒ Recovering from the bottom
- □ Trend: Back to ILECs
 - \Rightarrow Compatibility more important than latest technology
- □ Core market stagnant. Metro and Access more important.

Metro Networks

Raj Jain

CTO and Co-founder

Nayna Networks, Inc.

180 Rose Orchard Way, San Jose, CA 95134 Email: jain@acm.org

www.nayna.com and http://www.cis.ohio-state.edu/~jain/

□ SONET/SDH

- □ 1 GbE and 10GbE: Key Design Decisions
- Metro Ethernet Services
- □ SONET/SDH vs Ethernet: Issues and Remedies
- Resilient Packet Ring
- Networking Technologies: Failures vs Successes
- □ Next Generation SDH: VCAT, GFP, LCAS

SONET/SDH

- SONET=Synchronous optical network
- □ Standard for digital optical transmission
- Developed originally by Bellcore to allow mid-span meet between carriers: MCI and AT&T.
 Standardized by ANSI and then by ITU
 ⇒ Synchronous Digital Hierarchy (SDH)
- □ You can lease a SDH connection from carriers

SDH Functions

- Protection: Allows redundant Line or paths
- □ Fast Restoration: 50ms using rings
- Sophisticated OAM&P
- □ Ideal for Voice: No queues. Guaranteed delay
- □ Fixed Payload Rates: 51M, 155M, 622M, 2.4G, 9.5G Rates do not match data rates of 10M, 100M, 1G, 10G
- □ Static rates not suitable for bursty traffic
- One Payload per Stream
- High Cost

1 GbE: Key Design Decisions

- □ P802.3z ⇒ Update to 802.3
 Compatible with 802.3 frame format, services, management
- 1000 Mb vs. 800 Mb Vs 622 Mbps Single data rate
- □ LAN distances only
- □ No Full-duplex only ⇒ Shared Mode Allows both hub and switch based networks No one makes or uses GbE Hubs
- Same min and max frame size as 10/100 Mbps
 ⇒ Changes to CSMA/CD protocol Transmit longer if short packets

10 GbE: Key Design Decisions

- □ P802.3ae ⇒ Update to 802.3 Compatible with 802.3 frame format, services, management
- □ 10 Gbps vs. 9.5 Gbps. **Both** rates.
- □ LAN and MAN distances
- □ Full-duplex only \Rightarrow **No Shared** Mode Only switch based networks. No Hubs.
- □ Same min and max frame size as 10/100/1000 Mbps Point-to-point ⇒ No CSMA/CD protocol
- □ 10.000 Gbps at MAC interface
 ⇒ Flow Control between MAC and PHY
- Clock jitter: 20 or 100 ppm for 10GbE
 Incompatible with 4.6 ppm for SONET

10 GbE PMD Types						
PMD	Description	MMF	SMF			
10GBASE-R:						
10GBASE-SR	850nm Serial LAN 300		N/A			
10GBASE-LR	1310nm Serial LAN	N/A	10 km			
10GBASE-ER	1550nm Serial LAN	N/A	40 km			
10GBASE-X:						
10GBASE-LX4	1310nm WWDM LAN	300 m	10 km			
10GBASE-W:						
10GBASE-SW	850nm Serial WAN	300 m	N/A			
10GBASE-LW	1310nm Serial WAN	N/A	10 km			
10GBASE-EW	1550nm Serial WAN	N/A	40 km			
10GBASE-LW4	1310nm WWDM WAN	300 m	10 km			
S = Short Wave, L=Long Wave, E=Extra Long Wave						
\square R = Regular reach (64b/66b), W=WAN (64b/66b + SONET						
Encapsulation), $X = 8b/10b \Box 4 = 4 \lambda$'s						
NAYNA	ICBN 2004		©2004 Raj .			

10GBASE-CX4

- For data center applications (Not for horizontal wiring):
 Switch-to-switch links, Switch-to-server links
 External backplanes for stackables
- **Twinax cable with 8 pairs**
- □ Based on Infiniband 4X copper PHY. IB4X connectors.
- □ 10G to 15m (std). Some vendors can do 25-30m.
- □ Standard: Dec 2003. Passed Sponsor Ballot.
- □ IEEE 802.3ak, <u>http://www.ieee802.org/3/ak</u>

©2004 Raj Jain

10GBASE-T

- □ New PHY for data center and horizontal wiring
- Compatible with existing 802.3ae MAC, XGMII, XAUI
- Standard: Start: Nov 2003 Finish: Jul 2005
- □ 100 m on Cat-7 and 55+ m on Cat-6
- □ Some startups working on Cat-5e
- □ Cost 0.6 of optical PHY. Greater reach than CX4
- 10-level coded PAM signaling with 3 bits/symbol
 833 MBaud/pair => 450 MHz bandwidth w FEXT cancellation
 (1GBASE-T uses 5-level PAM with 2 bits/symbol, 125
 MBaud/pair, 80 MHz w/o FEXT)
- Full-duplex only. 1000BASE-T line code and FEC designed for half-duplex.
- IEEE 802.3an, <u>http://www.ieee802.org/3/an/index.html</u> ICBN 2004

©2004 Raj Jain

Metro Ethernet Services

- □ User-to-network Interface (UNI) = RJ45
- □ Ethernet Virtual Connection (EVC) = Flows
- □ Ethernet Line Service (ELS) = Point-to-point
- □ Ethernet LAN Service (E-LAN) = multipoint-to-multipoint

SONET/SDH vs Ethernet

Feature	SONET	Ethernet
Payload Rates	51M, 155M,	10M, 100M, 1G,
	622M, 2.4G,	10G
	9.5G	
Payload Rate	Fixed	√Any
Granularity		
Bursty Payload	No	√Yes
Payload Count	One	√Multiple
Protection	√Ring	Mesh
OAM&P	√Yes	No
Synchronous	√Yes	No
Traffic		
Restoration	$\sqrt{50}$ ms	Minutes
Cost	High	√Low
Used in	Telecom	Enterprise

SONET/SDH vs Ethernet: Remedies

	1	i	1
Feature	SONET	Ethernet	Remedy
Payload Rates	51M, 155M,	10M, 100M, 1G,	10GE at 9.5G
	622M, 2.4G,	10G	
	9.5G		
Payload Rate	Fixed	\sqrt{Any}	Virtual
Granularity			Concatenation
Bursty Payload	No	√Yes	Link Capacity
			Adjustment Scheme
Payload Count	One	√Multiple	Packet GFP
Protection	√Ring	Mesh	Resilient Packet
			Ring (RPR)
OAM&P	√Yes	No	In RPR
Synchronous	√Yes	No	MPLS + RPR
Traffic			
Restoration	$\sqrt{50}$ ms	Minutes	Rapid Spanning Tree
Cost	High	√Low	Converging
Used in	Telecom	Enterprise	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Enterprise vs Carrier Ethernet

Enterprise

- Distance: up to 2km
- **Scale:**
 - Few K MAC addresses4096 VLANs
- Protection: Spanning tree
- Path determined by spanning tree
- □ Simple service
- $\Box Priority \Rightarrow Aggregate QoS$
- No performance/Error monitoring (OAM)

Carrier

- **Up** to 100 km
- Millions of MAC Addresses
- Millions of VLANs Q-in-Q
- Rapid spanning tree (Gives 1s, need 50ms)
- **Traffic engineered path**
- **SLA**
- □ Need per-flow QoS
- □ Need performance/BER

- Dual Ring topology
- Supports broadcast and multicast
- \square Packet based \Rightarrow Continuous bandwidth granularity
- □ Max 256 nodes per ring

NAYNA

- □ MAN distances: Several hundred kilometers.
- Gbps speeds: Up to 10 Gbps

- □ Both rings are used (unlike SONET/SDH)
- Normal transmission on the shortest path
- ❑ Destination stripping ⇒ Spatial reuse Multicast packets are source stripped
- Several Classes of traffic: A0, A1, B-CIR, B-EIR, C
- □ Too many features and alternatives too soon (702 pages)

Networking: Failures vs Successes

- □ 1980: Broadband (vs baseband)
- □ 1984: ISDN (vs Modems)
- □ 1986: MAP/TOP (vs Ethernet)
- □ 1988: OSI (vs TCP/IP)
- **1991: DQDB**

VAYNA

- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: Integrated Services (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)

Requirements for Success

- $\Box \text{ Low Cost: Low startup cost} \Rightarrow \text{Evolution}$
- High Performance
- □ Killer Applications
- □ Timely completion
- Manageability
- □ Interoperability

Coexistence with legacy LANs
Existing infrastructure is more important than new technology

- □ VCAT: Bandwidth in increments of VT1.5 or STS-1
- For example: 10 Mbps Ethernet in 7 T1's = VT1.5-7v 100 Mbps Ethernet in 2 OC-1 = STS-1-2v, 1GE in 7 STS-3c = STS-3c-7v
- □ The concatenated channels can travel different paths \Rightarrow Need buffering at the ends to equalize delay
- All channels are administered together.
 Common processing only at end-points.

- Link Capacity Adjustment Scheme for Virtual Concatenation
- Allows hitless addition or deletion of channels from virtually concatenated SONET/SDH connections
- Control messages are exchanged between end-points to accomplish the change

LCAS (Cont)

□ Provides enhanced reliability. If some channels fail, the remaining channels can be recombined to produce a lower speed stream

Generic Framing Procedure (GFP)

Allows multiple payload types to be aggregated in one SONET/SDH path and delivered separately at dest.

- □ 1 GbE supports but does not use CSMA/CD.
- □ 10 GbE does not support CSMA/CD.
 - Two speeds: 10,000 Mbps and 9,584.640 Mbps
- **□** RPR to provide carrier grade reliability
Summary (Cont)

- Virtual concatenation allows a carrier to use any arbitrary number of STS-1's or T1's for a given connection. These STS-1's can take different paths.
- LCAS allows the number of STS-1's to be dynamically changed
- Frame-based GFP allows multiple packet types to share a connection
- Transparent GFP allows 8b/10 coded LANs/SANs to use PHY layer connectivity at lower bandwidth.

Raj Jain CTO and Co-founder Nayna Networks, Inc. 180 Rose Orchard Way, San Jose, CA 95134 Email: jain@acm.org

www.nayna.com and http://www.cis.ohio-state.edu/~jain/

□ xDSL

- □ Cable Modems and Hybrid Fiber Coax (HFC)
- □ Fiber To The X (FTTx)
- Bi-Directional Satellite
- □ Broadband Wireless Access (BWA) and WiMAX
- □ Mobile Broadband Wireless Access (MBWA)
- Optical Wireless Access
- Passive Optical Network (PON)

ICBN 2004

©2004 Raj Jain

Why Modems are Low Speed?

- **\Box** Telephone line bandwidth = 3.3 kHz
- □ V.34 Modem = 28.8 kbps \Rightarrow 10 bits/Hz
- □ Better coding techniques. DSP techniques.
- □ Cat 3 UTP can carry higher bandwidth
- □ Phone companies put 3.3 kHz filters at central office \Rightarrow Allows FDM

DSL

- Digital Subscriber Line = ISDN
- $64 \times 2 + 16 + \text{overhead}$
 - = 160 kbps up to 18,000 ft
- □ DSL requires two modems (both ends of line)
- ❑ Symmetric rates ⇒ transmission and reception on same wire ⇒ Echo cancellation
- □ ISDN uses 0 to 80 kHz \Rightarrow Can't use POTS simultaneously

Discrete Multi-Tone (DMT)

- Multicarrier modulation
- Inverse Discrete Fourier Transform (IDFT) to partition bandwidth into subchannels or tones
 E.g., 256/32 tones 4.3125 kHz apart = 1104/138 kHz Down/up
- Each tone is QAM modulated. 4kBaud symbols=250us frame Each tone carries 2 to 15 bits (Rate adaptive)
- Measure SNR of each subchannel Avoid severely degraded channels Lower data rate on degraded channels
- Built-in Reed-Solomon FEC with interleaving and Trellis coding

DMT vs QAM

First linc-code war: ANSI T1E1.4 ADSL olympics in 1993

DMT	QAM
Multi-carrier Modulation	Single-Carrier Modulation
Used in wireless, ADSL, ADSL2,	Used in Modems, Satellite, HPNA,
ADSL2+. Allows migration.	DOCSYS, HDSL, SDSL, SHDSL,
Implementation in the same chipset.	IDSL, RADSL, 5-level PAM used in
	100BT2 and 1000BT
Requires digital signal processing due	No DSP
to FFT and iFFT	
DSP firmware download	Hardwired
Needs training sequence and	No training sequence or handshake
initialization	
Dynamic Spectrum Management:on-	SNR averaging improves effective
the-fly PSD change. Line bonding.	bandwidth
Erasure of a part of a symbol kills the	Short symbols not affected by impulse
whole symbol	noise
VDSL Alliance: Ikanos, Stmicro,	VDSL Coalition: Infineon
Alcatel	
Requires licensing	Public domain
Final Decision: ANSI T1E1.4 June	2003: DMT Std, QAM in TRQ
NAYNA	
Networks ICBN 2	2004 ©2004 Raj

ICBN 2004

©2004 Raj Jain

Copper Broadband Systems I

Acronym	Description	Standards	Year	Modu-	# of	Up	Down	Spectrum
				lation	Pairs	Mbps	Mbps	in kHz
ADSL	Asymmetric	T1.413	1995	DMT	1	1	8	25-138 U
	DSL	G.992.1						25-1104 I
G.Lite	Splitterless	G.992.2	1999	DMT	1	1	1.5	25-138 U
	ADSL	T1.419						25-552 D
RADSL	Rate Adaptive	T1.TR.59		CAP	1	1	8	25-138 U
	DSL							25-1104 I
ADSL2	ADSL 2 nd	G.992.3	2003	DMT	1	1	12	0-276 U
	Gen							0-1104 D
G.Lite.bis	ADSL2 Lite	G.992.4	2003	DMT	1	1		
ADSL2+	Double Rate	G.992.5	2003	DMT	1	1	24	0-276 U
	ADSL2							0-2208 D
VDSL	Very high bit	T1.424	2002	DMT	1	13	22	25-12000
	rate DSL	G.vdsl		or				
				QAM				
EFM	Ethernet in the	10PASS-TS	2004	DMT	1	10	10	25-12000
	First Mile	2BASE-TL		DMT	1	2	2	25-138
NAYNA								
Networks ICBN 2004 ©200							©2004 Raj Jain	

Cor	oper i	Broa	adb	anc	d Sy	yste	ms	Π
Acronym	Description	Standards	Year	Modu- lation	# of Pairs	Up Mbps	Down Mbps	Spectrum in kHz
ISDN BRI	Basic Rate ISDN	T1.601 G.961	1986	2B1Q	1	0.160	0.160	0-80
IDSL	ISDN over DSL				1	0.144	0.144	
T1	T1	T1.403		AMI	2	1.544	1.544	0-1544
E1	E1	G.703		HDB3	2	2.048	2.048	0-2048
HDSL	High Bit- Rate DSL	G.991.1 T1.TR.28	1992	2B1Q	2	1.544	1.544	0-370
HDSL2	HDSL 2 nd Gen	T1.418 G.991.2		TC- PAM	1	1.544	1.544	0-300 U 0-440 D
HDSL4	4-wire HDSL 2 nd Gen	T1.418 G.991.2		TC- PAM	2	1.544	1.544	0-130 U 0-400 D
SDSL	Symmetric DSL	TS 101 524	1998	2B1Q	1	2.312	2.312	0-700
G.shdsl	Single pair HDSL	G.991.2 T1.422	2000	TC- PAM	1	2.312	2.312	0-400
ICBN 2004 Raj Jair								

ADSL

- □ Asymmetric Digital Subscriber Line
- □ Asymmetric \Rightarrow upstream << Downstream
- $\Box \quad Symmetric \Rightarrow Significant decrease in rate$
- Originally, 6 Mbps downstream, 640 kbps upstream
 Now up to 25 Mbps downstream
- **Up to 7500 m**
- Using existing twisted pair lines
- ❑ No interference with phone service (0-3 kHz)
 ⇒ Your phone isn't busy while netsurfing
- □ ANSI T1.413 Standard
- Quickest alternative for Telcos. Low cost winner.

Why Asymmetric?

- \Box Unshielded twisted pair \Rightarrow Crosstalk
- ❑ Downstream signals are all same amplitude ⇒ Not affected
- □ Upstream signals start at different distances ⇒
 Different amplitudes ⇒ Weak signals are highly affected
- **Solutions:**
 - 1. Use asymmetric rates
 - 2. Use lower frequencies for upstream (Cross talk increases with frequencies)

ADSL Lite (G.Lite)

- Designed for easy installation and lower cost
- □ Lower data rate and longer reach

Full Rate ADSL (G.992.1)	Universal ADSL (G.992.2)
Optimized for data rate	Optimized for cost
8Mbps up, 800 kbps down	1.5 Mbps up, 512 kbps down
256 tones	128 tones
15 bits/tone	8 bits/tone
Echo canceled	FDM with EC option
Full initialization	Fast retrain
No power management	Power management

ADSL2
G.992.3 also known as G.dmt.bis G.992.4 is G.lite.bis Completed in July 2002
0-276 kHz up, 0-1104 kHz down. Subset within these masks can be used. E.g., 25-276 kHz up, 25-1104 kHz down with POTS.
12 Mbps down, 1 Mbps up 50 kbps more than ADSL on long lines 600 feet more reach for the same data rate
Programmable Framing Overhead, Improved Performance, Power Management, Diagnostics, Seamless Rate Adaptation (SRA), Multipair bonding, Dynamic Rate Partitioning, Fast Startup, All-digital mode, Multi-vendor Interoperability, Customer installable

ADSL2+

- **G**.992.5 (January 2003)
- Downstream frequency up to 2.2 MHz
- ❑ ADSL2 with double bandwidth downstream
 ⇒ double data rate (24 Mbps) on lines shorter than 5000 ft.
- Can use only 1.1MHz to 2.2MHz (mask frequency below 1.1MHz) Reduced cross-talk in a binder

VDSL

□ Supports both symmetric and asymmetric bit rates:

□ Symmetric: 26 Mbps, 13 Mbps, 8 Mbps

□ Asymmetric: 52/6.4, 26/3.2, 12/2, 6/2 Mbps Ratios: 8:1, 6:1, 4:1, 3:1, 2:1

Higher speed using higher bandwidth
 50 Mbps down and 30 Mbps up in Japan
 120 Mbps full-duplex touted by some vendors

AYNA

- Need to overcome: bridged taps, crosstalk, impulse noise, RF ingress, RF egress (less than -80 dBm/Hz in amateur radio band)
- Band below 1.104 MHz may not be used to avoid interference with ADSL lines in the same bundle
- Dynamic Spectrum Management (DSM): Limit power. Increase cooperation between pairs.

Cable TV Spectrum

- □ 50-550 MHz reserved for NTSC analog cable in USA
- Divided into 6 MHz channels
- 5-50 MHz can be used for upstream channel and 550-850 MHz for downstream digital channel Low-Split system. Most Common.

- □ Reuse existing cable TV coax
- □ Replace trunks to neighborhoods by fibers
- □ 45 Mbps downstream, 1.5 Mbps upstream
- □ MAC protocol required to share upstream bandwidth
- □ 500 to 1200 homes per HFC link
- $\Box \text{ Sharing} \Rightarrow \text{Security issues}$
- □ IEEE 802.14 standard for MAC and PHY

Cable Modems

- Modulate RF frequencies into cable. Signal received at the headend and converted to optical
- ☐ If cable is still one-way, upstream path through POTS
- \$30 to \$40 per month flat service charge

Comparison of RANs

Tech-	Typical	Typical	Max	Homes	
nology	Downstream	Upstream	Distance	Per Opt.	
	Rate	Rate		Unit	
HFC	45 Mbps	1.5 Mbps	N/A	500	
	Shared	Shared			
FTTC	25-50 Mbps	25-50	100 m	10-50	
		Mbps			
FTTH	1000 Mbps	1000 Mbp	sN/A	10-200	
ADSL	6 Mbps	640 kbps	4,000 m	1,000	
VDSL	13-50 Mbps	1.6-5	2,000 m	100	
NIAVNIA		Mbps			
Networks		ICBN 2004		©2004 F	Raj Ja

xDSL Vs Cable Modems

xDSL	Cable Modems
Phone company	Cable company
Switching experience	No switching but high
but low bandwidth ckts	bandwidth infrastructure
Point-to-point \Rightarrow Data	Broadcast. Sharing \Rightarrow
privacy	More cost effective
Currently 1.5 to 50 Mbp	s 10 to 30 Mbps
Perf = fn(location)	Independent of location
Phone everywhere	Cable only in suburbs
	(not in office parks)
Existing customers \Rightarrow	New Revenue
ISDN and T1 obsolete	
Networks	CBN 2004 ©2004 Ra

Bi-Directional Satellite

- □ Asymmetric: 500 kbps down, 50 kbps up
- Long propagation delays: Accelerator software
- □ Bi-directional satellite systems for mobile applications
- □ <u>www.starband.com</u> and <u>www.motosat.com</u>

Broadband Wireless Access (BWA)

- □ IEEE 802.16 Broadband wireless Access WG
- □ Delivers >1 Mbps per user
- \Box Up to 50 km
- Data rate vs Distance trade off using adaptive modulation. 64QAM to QPSK
- □ Offers non-line of site operation
- □ 1.5 to 20 MHz channels
- □ Hundreds of simultaneous sessions per channel
- □ Both Licensed and unlicensed spectrum
- □ QoS for voice, video, and T1/E1

WiMAX

- □ A vendor organization for ensuring interoperability
- A WiMAX certified product will work with other WiMAX certified products
- □ Plugfests planed from Dec 2004 on wards
- □ WiMAX certified products will be available Q1'05

IEEE 802.11 vs 802.16

	802.11	802.16
Range	Optimized for 100m	Optimized for 7-10 km
		Up to 50 km Multi path delays tolerated
Coverage	Optimized for indoor	Optimized for outdoor
		Adaptive modulation
Scalability	Fixed 20 MHz channel (3 Non-	1.5 MHz to 20 MHz Channels
5	overlapping channels in 802.11b, 5	License and license exempt bands
	in 802.11a)	Allows Cell Planning
Spectral	2.7 bps/Hz \Rightarrow 54 Mbps in 20 MHz	$3.8 \text{ bps/Hz} \Rightarrow 75 \text{ Mbps in } 20 \text{ MHz}$
Efficiency		$5 \text{ bps/Hz} \Rightarrow 100 \text{ Mbps in } 20 \text{ MHz}$
MAC	Contention based	Grant based
QoS	Simple	Sophisticated

802.16 Flavors

- **802.16** (December 2001):
 - □ Fixed broadband wireless interface
 - \Box 10-66 GHz \Rightarrow Line of sight only \Rightarrow Point-to-point
- □ 802.16c (December 2002):

□ WiMAX system Profiles added

3 802.16a (January 2003):

□ Extensions for 2-11 GHz non line of sight

Point-to-multipoint applications

802.16REVd (Q3 2004):

□ Add WiMAX system profiles

802.16e (2005):

□ Vehicular speed mobility in 2-6 GHz licensed bands

Enables roaming

IEEE 802.16 Flavors

	802.16	802.16a	802.16e
Date	Dec 2001	802.16a: Jan 2003 802.16a Rev d: Q3'04	Q3'04
Spectrum	10-66 GHz	<11 GHz	<6 GHz
Conditions	Line of Sight only	Non line of Sight	Non Line of sight
Bit Rate	32-134 Mbps at 28 MHz Channels	Up to 75 Mbps at 20 MHz	Up to 15 Mbps at 5 MHz
Modulation	QPSK, 16QAM, 64 QAM	OFDM 256 Sub carriers, QPSK, 16 QAM, 64 QAM	OFDM 256 Sub carriers, QPSK, 16 QAM, 64 QAM
Mobility	Fixed	Fixed	Pedestrian

Mobile Broadband Wireless Access (MBWA)

- □ IEEE 802.20 working group
- Optimized for IP data transport
- □ Licensed band below 3.5 GHz
- \Box >1 Mbps data rate
- □ Vehicular mobility up to 250 Km/h
- Designed for green field wireless data providers
- Incumbent cellular providers with voice services may prefer 3G

Comparison of MBWA Stds

	802.16e	802.20	3G
Provider	Fixed Wireless adding mobility as enhencement	Wireless data service provider	Cellular voice service provider evolving to data support
Technology	Extension to 802.16a MAC and PHY	New MAC and PHY	W-CDMA, CDMA- 2000
Design Restrictions	Optimized for backward compatibility	Optimized for full mobility	Evolution of GSM or IS-41
Bands	Licensed 2-6 GHz	Licensed below 3.5 GHz	Licensed below 2.7 GHz
Orientation	Packet oriented	Packet Oriented	Circuit oriented
Latency	Low Latency data	Low Latency data	High Latency data
NAYNA	I	CBN 2004	©2004 Rai

Handoff

- □ IEEE 802.21 Working group (formed Nov 03)
- □ Handoff between 802.3, 802.11, 802.15, 802.16, ...
- **Example Scenario:**
 - Docked Laptop with 802.3, 802.11, and 802.16e
 - □ Laptop undocks and switches to 802.11
 - □ User moves outside the building, laptop switches to 802.16e

Optical Wireless Access

- □ Also known as "Free Space Optics (FSO)"
- Optical transceiver
 - Laser diode transmitter (780 nm, 1550 nm)
 - □ Photo detector (PIN diode, APD)
- □ Wireless \Rightarrow Fast rooftop deployment, No spectrum licenses
- Optical link requires line of site \Rightarrow Alignment critical
- □ Very high bandwidth (OC-3, OC-12, OC-48, 1GbE)

Optical Wireless (Cont)

- □ Immunity from interference
- **Easy installation**
 - \Rightarrow Unlimited bandwidth, Easy Upgrade
- □ Transportable upon service termination or move
- □ Affected by weather (fog, rain, sun)
 - \Rightarrow Need lower speed Microwave backup
- Depends on location
 - □ San Diego, CA (coastal fog)
 - □ Sacramento, CA (radiant fog)
 - □ Tucson, AZ (almost no fog)

ICBN 2004

Passive Optical Network (PON)

- A single fiber is used to support multiple customers
- □ No active equipment in the path \Rightarrow Highly reliable
- OLT assigned time slots upstream.
- Optical Line Terminal (OLT) in central office
- Optical Network Terminal (ONT) on customer premises
 Optical Network Unit (ONU) at intermediate points w xDSL

Types of PONs

- APON: Initial name for ATM based PON spec.
 Designed by Full Service Access Network (FSAN) group
- BPON: Broadband PON standard specified in ITU G.983.1 thru G.893.7 = APON renamed

□ 155 or 622 Mbps downstream, 155 upstream

EPON: Ethernet based PON draft being designed by IEEE 802.3ah.

□ 1000 Mbps down and 1000 Mbps up.

GPON: Gigabit PON standard specified in ITU G.984.1 and G.984.2

□ 1244 and 2488 Mbps Down, 155/622/1244/2488 up

ICBN 2004

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)
- □ Ref: <u>http://www.citynettelecom.com</u>, NFOEC 2001, pp. 331

- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers

Fast Restoration: Broken sewer pipes replaced with minimal disruption

ICBN 2004

- □ High Speed Access to Home: VDSL is here.
- □ 1 to 50 Mbps downstream, 1.5 50 Mbps upstream
- □ Broadband Wireless 802.16 devices coming soon
- □ Fiber to the home is finally happing.

Broadband: Key References

- For a detailed list of references, see <u>http://www.cis.ohio-state.edu/~jain/refs/rbb_refs.htm</u>
- Recommended books on optical networking, <u>http://www.cis.ohio-state.edu/~jain/refs/opt_book.htm</u>
- □ IEEE 802.14 Working group, <u>http://www.walkingdog.com</u>
- The ADSL Forum, <u>http://www.sbexpos.com/sbexpos/associations/adsl/home.html</u>
- □ Cable Labs, <u>http://www.cablemodem.com</u>
- □ EFM Alliance, <u>www.efmalliance.org</u>
- □ FTTH Council, <u>www.ftthcouncil.org</u>

