Traffic Management for the Available Bit Rate (ABR) Service in Asynchronous Transfer Mode (ATM) Networks

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By

Shivkumar Kalyanaraman, B.Tech, M.S.

* * * * *

The Ohio State University

1997

Dissertation Committee:

Raj Jain, Adviser Ten-Hwang Lai

Wu-chi Feng

Approved by

Adviser Department of Computer and Information Sciences © Copyright by

Shivkumar Kalyanaraman

1997

ABSTRACT

With the merger of telecommunication, entertainment and computer industries, computer networking is adopting a new paradigm called Asynchronous Transfer Mode (ATM) networking. ATM networks have multiple service classes allow audio, video and data to share the same network. Of these, the Available Bit Rate (ABR) service class is designed to efficiently support data traffic.

Traffic management involves the design of a set of mechanisms which ensure that the network bandwidth, buffer and computational resources are efficiently utilized while meeting the various Quality of Service (QoS) guarantees given to sources as part of a traffic contract. The general problem of network traffic management involves all the available traffic classes. In this dissertation, we address the problem of designing traffic management mechanisms for one class - the ABR service class in ATM networks.

We consider five aspects of this problem in this dissertation. First, the ABR service requires a mechanism to carry rate feedback from the network switches to the sources. We design three switch algorithms (the OSU scheme, the ERICA and ERICA+ schemes) which calculate the rate allocations to satisfy different sets of goals. Second, we design a set of source end system mechanisms which respond to network feedback, and perform control in the case when feedback is disrupted or is stale. Third, we validate the performance of the service for various ABR and VBR demand patterns. Specifically, we study the case of Internet traffic over ATM-ABR. Fourth, we consider the switch design issues for a specific ABR framework option called the "Virtual Source/Virtual Destination" option. Finally, we discuss cost/performance issues pertaining to the implementation of the service.

In summary, this dissertation work addresses fundamental issues in ATM ABR traffic management, and the techniques developed are applicable to a wider class of high-speed packet networks.

Traffic Management for the Available Bit Rate (ABR) Service in Asynchronous Transfer Mode (ATM) Networks

By

Shivkumar Kalyanaraman, Ph.D. The Ohio State University, 1997 Raj Jain, Adviser

With the merger of telecommunication, entertainment and computer industries, computer networking is adopting a new paradigm called Asynchronous Transfer Mode (ATM) networking. ATM networks have multiple service classes allow audio, video and data to share the same network. Of these, the Available Bit Rate (ABR) service class is designed to efficiently support data traffic.

Traffic management involves the design of a set of mechanisms which ensure that the network bandwidth, buffer and computational resources are efficiently utilized while meeting the various Quality of Service (QoS) guarantees given to sources as part of a traffic contract. The general problem of network traffic management involves all the available traffic classes. In this dissertation, we address the problem of designing traffic management mechanisms for one class - the ABR service class in ATM networks. We consider five aspects of this problem in this dissertation. First, the ABR service requires a mechanism to carry rate feedback from the network switches to the sources. We design three switch algorithms (the OSU scheme, the ERICA and ERICA+ schemes) which calculate the rate allocations to satisfy different sets of goals. Second, we design a set of source end system mechanisms which respond to network feedback, and perform control in the case when feedback is disrupted or is stale. Third, we validate the performance of the service for various ABR and VBR demand patterns. Specifically, we study the case of Internet traffic over ATM-ABR. Fourth, we consider the switch design issues for a specific ABR framework option called the "Virtual Source/Virtual Destination" option. Finally, we discuss cost/performance issues pertaining to the implementation of the service.

In summary, this dissertation work addresses fundamental issues in ATM ABR traffic management, and the techniques developed are applicable to a wider class of high-speed packet networks. To my family

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Raj Jain for the excellent guidance and inspiration he has provided for me throughout this work.

I could have never achieved this goal without the steadfast support from my parents.

I would like to thank my collegues, Rohit Goyal, Sonia Fahmy, Bobby Vandalore, Sohail Munir, Ram Viswanathan, Xianrong Cai, Fang Lu, Arun Krishnamoorthy, and Manu Vasandani for giving me an enjoyable and memorable time in the networking lab. The times I remember are usually late in the nights, when we were handling deadlines and had to review each others' work while photocopying tons of paper.

Thanks are due to my good friends and former roommates, C.V. Shankar, Shyamala, Satya, Kram, Sri, Ram Kaushik, Rekha, Rajeev, Saddam, Kishore, Balaji, Prakash, Jayanthi, Ajay, Vijay, Ashok, Lalitha, Revathi, Subra, the Sangam music band, and a host of Columbus folks for putting up with my variable moods and for the fun time I had with them.

A big hi to friends, especially Oil and PV whom I know will read this page.

Finally I'd like to thank Prof. Steve Lai, Prof. Wuchi Feng, and Prof. Anish Arora for their interest in my work and for their valuable suggestions.

VITA

April 30, 1971	Born - Madras, India
1993	B.Tech Computer Science and Engi- neering, Indian Institute of Technology, Madras, India
1994	M.S Computer and Information Sci- ences, The Ohio State University
1994-present	Graduate Research Associate, The Ohio State University

PUBLICATIONS

Research Publications

R. Jain, S. Kalyanaraman, R. Goyal and S. Fahmy, "Source Behavior for ATM ABR Traffic Management: An Explanation". *IEEE Communications Magazine*, November 1996

R. Jain, S. Kalyanaraman and R. Viswanathan, "Method and Apparatus for Congestion Management in Computer Networks using Explicit Rate Indication". U.S. Patent Number 5,633,859, granted May 27th, 1997

R. Jain, S. Kalyanaraman and R. Viswanathan, "The OSU Scheme for Congestion Avoidance in ATM Networks: Lessons Learnt and Extension". *Performance Evaluation Journal*, Vol. 31/1-2, December, 1997

FIELDS OF STUDY

Major Field: Computer and Information Sciences

TABLE OF CONTENTS

Page

Abst	ract	ii
Dedi	catio	niv
Ackn	owle	dgments
Vita		vi
List	of Ta	bles
List	of Fig	gures
Chap	oters:	
1.	Intro	duction and Problem Statement
	1.1	Asynchronous Transfer Mode (ATM) Networks
	1.2	The Available Bit Rate (ABR) Service
	1.3	Traffic Management vs Congestion Control
	1.4	Traffic Management for the ABR Service
		1.4.1 Problem Statement
		1.4.2 Thesis Organization
2.	The	ABR Traffic Management Framework
	2.1	ABR Parameters
	2.2	In-Rate and Out-of-Rate RM Cells
	2.3	Forward and Backward RM cells
	2.4	RM Cell Format
	2.5	Source End System Rules
	2.6	Destination End System Rules

	2.7	Switch Behavior
	2.8	Summary
3.	Swite	h Scheme Design Issues
	3.1	Switch Model
	3.2	ABR Switch Scheme Goals
		3.2.1 Congestion Avoidance
		3.2.2 Fairness
	3.3	Stable Steady State
	3.4	Transient Response
	3.5	Miscellaneous Goals
	3.6	ABR Switch Scheme Limitations
4.	Surve	ey of ATM Switch Congestion Control Scheme Proposals
	4.1	Credit-Based Framework
	4.2	Rate-Based Approach
	4.3	Binary Feedback Schemes
		4.3.1 Key Techniques
		4.3.2 Discussion
	4.4	Explicit Rate Feedback Schemes
	4.5	MIT Scheme
		4.5.1 Key Techniques
		4.5.2 Discussion
	4.6	EPRCA and APRC
		4.6.1 Key Techniques
		4.6.2 Discussion
	4.7	CAPC2
		4.7.1 Key Techniques
		4.7.2 Discussion
	4.8	Phantom
		4.8.1 Key Techniques
		4.8.2 Discussion
	4.9	UCSC Scheme
		4.9.1 Key Techniques
		4.9.2 Discussion
	4.10	DMRCA scheme
		4.10.1 Key Techniques
		4.10.2 Discussion
	4.11	FMMRA Scheme 84
		4.11.1 Key Techniques

		4.11.2	Discussion				•		85
	4.12	HKUS	T Scheme						86
		4.12.1	Key Techniques						86
		4.12.2	Discussion						87
	4.13	SP-EP	RCA scheme						88
		4.13.1	Key Techniques						88
		4.13.2	Discussion						90
	4.14	Summ	ary of Switch Congestion Control Schemes						91
		4.14.1	Common Drawbacks	•	•	·	•	•	92
5.	The	Ohio St	ate University (OSU) Scheme			•			95
	5.1	The So	cheme						95
		5.1.1	Control-Cell Format						96
		5.1.2	The Source Algorithm						98
		5.1.3	The Switch Algorithm						100
		5.1.4	The Destination Algorithm						104
		5.1.5	Initialization Issues						104
	5.2	Key Fe	eatures and Contributions of the OSU scheme						105
		5.2.1	Congestion Avoidance						105
		5.2.2	Parameters						106
		5.2.3	Use Measured Rather Than Declared Loads $\ . \ . \ .$				•		108
		5.2.4	Congestion Detection: Input Rate vs Queue Length						108
		5.2.5	Bipolar Feedback				•	•	111
		5.2.6	Count the Number of Active Sources				•	•	112
		5.2.7	Order 1 Operation				•		113
		5.2.8	Backward Congestion Notifications Cannot Be Used	to	In	1C.	re	ase	e113
	5.3	Extens	ions of The OSU Scheme				•		114
		5.3.1	Aggressive Fairness Option				•	•	114
		5.3.2	Precise Fair Share Computation Option				•	•	117
		5.3.3	BECN Option		•		•	•	119
	5.4	Other	Simple Variants of the OSU Scheme		•	•	•		121
	5.5	Simula	tion Results		•		•	•	122
		5.5.1	Default Parameter Values		•	•	•		123
		5.5.2	Single Source		•		•	•	123
		5.5.3	Two Sources $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$		•		•	•	125
		5.5.4	Three Sources		•		•	•	125
		5.5.5	Transient Sources	•	•		•	•	125
		5.5.6	Parking Lot	•	•		•	•	127
		5.5.7	Upstream Bottleneck	•	•		•	•	127
	5.6	Result	s for WAN Configuration		•	•	•	•	130
	5.7	Result	s with Packet Train Workload						132

	5.8	Proof: Fairness Algorithm Improves Fairness	138
		5.8.1 Proof of Claim C1	139
		5.8.2 Proof of Claim C2	141
		5.8.3 Proof for Asynchronous Feedback Conditions	145
	5.9	Current Traffic Management Specifications vs OSU Scheme	147
	5.10	Limitations and Summary of the OSU Scheme	148
6.	The	ERICA and ERICA+ Schemes	153
	6.1	The Basic ERICA Algorithm	154
	6.2	Achieving Max-Min Fairness	156
	6.3	Fairshare First to Avoid Transient Overloads	157
	6.4	Forward CCR Used for Reverse Direction Feedback	159
	6.5	Single Feedback in a Switch Interval	160
	6.6	Per-VC CCR Measurement Option	161
	6.7	ABR Operation with VBR and CBR in the Background	163
	6.8	Bi-directional Counting of Bursty Sources	164
	6.9	Averaging of the Number of Sources	165
	6.10	Boundary Cases	165
		Averaging of the Load Factor	166
		Time and Count Based Averaging	168
	6.13	Selection of ERICA Parameters	169
		6.13.1 Target Utilization U	170
		6.13.2 Switch Averaging Interval AI	171
		ERICA+: Queue Length as a Secondary Metric	172
		ERICA+: 100% Utilization and Quick Drain of Queues	173
	6.16	ERICA+: Maintain a "Pocket" of Queues	174
		ERICA+: Scalability to Various Link Speeds	174
		ERICA+: Target Operating Point	175
		The ERICA+ Scheme	176
		Effect of Variation on ERICA+	180
	6.21	Selection of ERICA+ Parameters	182
		6.21.1 Parameters a and b	182
		6.21.2 Target Queueing Delay $T0$	183
		6.21.3 Queue Drain Limit Factor $QDLF$	185
	6.22	Performance Evaluation of the ERICA and ERICA+ Schemes \ldots	186
		6.22.1 Parameter Settings	187
		6.22.2 Efficiency	188
		6.22.3 Minimal Delay and Queue Lengths	189
		6.22.4 Fairness	190
		6.22.5 Transient and Steady State Performance	192
		6.22.6 Adaptation to Variable ABR Capacity	193

		6.22.7 Adaptation to Various Source Traffic Models	194
		6.22.8 Bursty Traffic	195
		6.22.9 ACR Retention	197
	6.23	Summary of the ERICA and ERICA+ Schemes	198
7.	Sour	ce Rule Design for the ABR Service	223
	77 1	Use It on I see It Delisies	224
	7.1	Use-It-or-Lose-ItPoliciesPolicies7.1.1Issues in Use-It-or-Lose-ItPolicies	
			$\begin{array}{c} 225\\ 226 \end{array}$
		7.1.2 Early UILI Proposals	
		7.1.3 Problems and Side Effects of Early Proposals	228
		7.1.4 Worst Case Performance	228
		7.1.5 Bursty and RPC Traffic Performance	229
		7.1.6 December 1995 Proposals	230
		7.1.7 Unresolved UILI Issues	230
		7.1.8 Count-Based UILI Proposal	231
		7.1.9 Time-Based UILI Proposal	237
		7.1.10 Joint Source-Based UILI Proposal	238
		7.1.11 Switch-Based Proposal	239
		7.1.12 Simulation Results	240
		7.1.13 Summary of UILI Alternatives and ATM Forum Decision .	252
	7.2	Issues with Low Rate Sources	253
	7.3	Summary of Source Rule Design Issues	255
8.	Supp	orting Internet Applications over the ATM-ABR Service	256
	8.1	TCP control mechanisms	258
	8.2	Closed Loop vs Open Loop Control Revisited	260
	8.3	Nature of TCP Traffic at the ATM Layer	261
	8.4	TCP Performance With Cell Loss	264
	8.5	Source Model and TCP Options	265
	8.6	ABR Source End System and ERICA Parameters	266
	8.7	The n Source + VBR Configuration $\dots \dots \dots$	266
	8.8	Performance Metrics	268
	8.9	Peak TCP Throughput	268
		Effect of Finite Buffers	200 270
		Effect of Finite Buffers and Varying ABR Capacity	270
		Observations on Tail Drop	272
		-	270
		Summary of TCP/IP performance over ABR under lossy conditions	
	8.14	Buffering Requirements for TCP over ABR	279
		8.14.1 Assumptions \ldots \ldots \ldots \ldots	280
		8.14.2 Derivation of the buffer requirement	281

	8.15	Factors Affecting Buffering Requirements of TCP over ATM-ABR	
		Service	295
		8.15.1 Effect of Number of Sources	296
		8.15.2 Effect of Round Trip Time (RTT)	296
		8.15.3 LANs: Effect of Switch Parameters	297
		8.15.4 Effect of Feedback Delay	298
		8.15.5 TCP Performance over ATM Backbone Networks	299
		8.15.6 Summary of buffering requirements for TCP over ABR	302
	8.16	Effect of ON-OFF VBR Background Traffic	303
		8.16.1 Simulation Results	304
		8.16.2 Summary of ON-OFF VBR background effects	311
	8.17	Effect of Long-Range Dependent (LRD) VBR background traffic .	312
		8.17.1 Overview of MPEG-2 over ATM	312
		8.17.2 VBR Video modeling	317
		8.17.3 Modeling MPEG-2 Transport Streams over VBR	318
		8.17.4 Observations on the Long-Range Dependent Traffic Genera-	
		tion Technique	320
	8.18	Simulation Configuration and Parameters	321
		8.18.1 Effect of High Variance and Total VBR Load	323
		8.18.2 Comparison with ON-OFF VBR Results	325
		8.18.3 Satellite simulations with Short Feedback Delay	326
		8.18.4 Satellite simulations with Long Feedback Delay	328
		8.18.5 Summary of the effect of long-range dependent VBR	330
	8.19	Effect of bursty TCP applications	331
	8.20	Summary of TCP over ABR results	333
9.	The	Virtual Source/Virtual Destination (VS/VD) Feature: Design Con-	
	sider	ations	337
	0.1		000
	9.1	6	339
		9.1.1 A Non-VS/VD Switch \dots	339
		9.1.2 A VS/VD Switch \dots	340
		9.1.3 A VS/VD Switch with Unidirectional Data Flow	342
	0.0	9.1.4 Bi-directional Data Flow	342
	9.2	The ERICA Switch Scheme: Renotated	344
		9.2.1 Rate Calculations in a non-VS/VD Switch	344
	0.0	9.2.2 Rate Calculations in a VS/VD Switch	345
	9.3	VS/VD Switch Design Options	346
		9.3.1 Measuring the VC's Current Rate	346
		9.3.2 Measuring the Input Rate at the Switch	347
		9.3.3 Effect of Link Congestion Actions on Neighboring Links	348
		9.3.4 Frequency of Updating the Allocated Rate	349

	9.4	VS/VD Switch Design Options			350
		9.4.1 VC Rate Measurement Techniques			350
		9.4.2 Input Rate measurement techniques			351
		9.4.3 Combinations of VC rate and input rate measurement of	opti	ons	351
		9.4.4 Effect of Link Congestion Control Actions			354
		9.4.5 Link Congestion and Allocated Rate Update Frequency	: V	i-	
		able Options			355
	9.5	Performance Evaluation of VS/VD Design Options			357
		9.5.1 Metrics			357
	9.6	Conclusions		•	361
10.	Impl	lementation Issues			364
		ATM Service Categories Revisited			364
	10.2	2 Issues in ABR Implementation Complexity			366
		10.2.1 Switch issues			367
		10.2.2 End-system issues	•••	•	372
11.	Sum	nmary and Future Work		•	374
	11.1	l Summary of Contributions			374
		2 Future Work			378
App	\mathbf{endic}	es:			
А.	Sour	rce, Destination and Switch Rules			380
В.	The	OSU Scheme: Pseudo code			389
	B.1	The Source Algorithm			389
	B.2	0			391
	2.2			•	001
С.	ERI	CA Switch Algorithm: Detailed Description	• •	•	396
	C.1	Variables and Flow charts			396
	C.2	Pseudocode			397
	C.3	Pseudocode for VS/VD Design Options			414
	C.4	· –			415
D.	Glos	ssary of Commonly Used Acronymns			419
		· · · ·			

LIST OF TABLES

Tab	le	Page
2.1	List of ABR Parameters	17
2.2	Source End System actions upon CI and NI bits	30
6.1	Boundary Cases	166
7.1	BRM Actions In The Different Regions Of Count-Based UILI	235
8.1	Simulation Results: Summary	275
8.2	Effect of number of sources	297
8.3	Effect of Round Trip Time (RTT)	297
8.4	Effect of Switch Parameter (Averaging Interval)	298
8.5	Effect of Feedback Delay	299
8.6	Source Queues in ABR	300
8.7	Effect of VBR ON-OFF Times	305
8.8	Effect of Feedback Delay with VBR	307
8.9	Effect of Switch Scheme	311
8.10	Effect of Variance and VBR Load: $MSS = 512$ bytes \ldots \ldots \ldots	323
8.11	Effect of Variance and VBR Load: $MSS = 512$ bytes	324

8.12	Maximum Queues for Satellite Networks with Short Feedback Delay: MSS=512 bytes	327
8.13	Maximum Queues for Satellite Networks with Short Feedback Delay : MSS=9140 bytes	328
8.14	Maximum Queues for Satellite Networks with Long Feedback Delay: MSS=512 bytes	330
8.15	Maximum Queues for Satellite Networks with Long Feedback Delay: MSS=9140 bytes	330
9.1	Viable combinations of VC rate and input rate measurement $\ . \ . \ .$	352
9.2	Summary of viable VS/VD design alternatives $\ldots \ldots \ldots \ldots \ldots$	357
9.3	Cells received at the destination per source in Kcells	359
9.4	Convergence time in ms	360
9.5	Maximum queue length in Kcells	361
C.1	Explanation of some of the ERICA Pseudocode variables \ldots .	406

LIST OF FIGURES

Figu	Figure Pag		
1.1	ATM ABR and VBR traffic sharing a link	3	
2.1	ABR Traffic Management Model: Source, Switch, Destination and Resource Management Cells	13	
2.2	Initial Binary Feedback Scheme	14	
2.3	Initial Explicit Rate Scheme	15	
2.4	Forward and Backward Resource Management Cells (FRMs and BRMs)	19	
2.5	Resource Management (RM) Cell Fields	20	
2.6	Frequency of forward RM cells	23	
2.7	Scheduling of forward RM, backward RM, and data cells	24	
2.8	Source Rule 6 does not trigger if BRM flow is maintained	28	
3.1	Throughput versus delay	40	
3.2	Operating point between the "knee" and the "cliff" \ldots	42	
3.3	Sample configuration for max-min fairness	43	
3.4	Configuration after removing VC 3	44	
3.5	Transient vs Steady State Performance	46	

5.1	Transmitted cell rate (instantaneous) and Offered Average Cell Rate (average).	96
5.2	Transmitted cell rate (controlled) and Offered Average Cell Rate (measured).	97
5.3	Flow chart for updating TCR	100
5.4	Correlation of Instantaneous Queue States to TCR	104
5.5	Congestion Detection Metric: Queue Length or Input Rate ?	109
5.6	Space time diagram showing out-of-order feedback with BECN	114
5.7	Multi-line Increase and Decrease Functions	117
5.8	Simulation results for the experiment with transients and Multi-line fairness option	118
5.9	A layered view of various components and options of the OSU scheme	121
5.10	Single source configuration	123
5.11	Simulation results for the single source configuration $\ldots \ldots \ldots$	124
5.12	Two-source configuration	125
5.13	Simulation results for the two-source configuration	126
5.14	Three-source configuration	127
5.15	Simulation results for the three-source configuration	128
5.16	Simulation results for the transient experiment	129
5.17	The parking lot fairness problem. All users should get the same through- put regardless of the parking area used	130
5.18	Simulation results for the parking lot configuration	131
5.19	Network configuration with upstream bottleneck.	132

5.20	Simulation results for the upstream bottleneck configuration	133
5.21	Simulation results for the transient configuration with 1000 km inter- switch links	134
5.22	Simulation results for the transient configuration with packet train workload.	136
5.23	Simulation results for the upstream bottleneck configuration with packet train workload.	137
5.24	A geometric representation of efficiency and fairness for a link shared by two sources	151
5.25	Subregions of the TUB used to prove Claims C1 and C2 $\ldots \ldots$	152
6.1	Reverse direction feedback	159
6.2	Independence of source and switch intervals	161
6.3	Step functions for ERICA+	177
6.4	Linear functions for ERICA+	178
6.5	Hysteresis functions for ERICA+	179
6.6	The queue control function in ERICA+	180
6.7	One source configuration	188
6.8	Two source configuration	189
6.9	Parking lot configuration	190
6.10	Upstream Configuration	191
6.11	Results for a one source configuration in a LAN (ERICA)	199
6.12	Results for a one source configuration in a LAN (ERICA+)	200

6.13	Results for a two sources configuration in a LAN (ERICA) \ldots .	201
6.14	Results for a two sources configuration in a LAN (ERICA+) $\ . \ . \ .$	202
6.15	Results for a parking lot configuration in a LAN (ERICA) $\ . \ . \ .$.	203
6.16	Results for a parking lot configuration in a LAN (ERICA+) $\ . \ . \ .$	204
6.17	Results for an upstream configuration in a WAN (ERICA without the max-min fairness enhancement)	205
6.18	Results for an upstream configuration in a WAN (ERICA with the max-min fairness enhancement)	206
6.19	Results for a transient source configuration in a LAN (ERICA without the "fairshare first" enhancement)	207
6.20	Results for a transient source configuration in a LAN (ERICA with the "fairshare first" enhancement)	208
6.21	Results for a two source configuration with (1 ms on/1 ms off) VBR background in a WAN (ERICA)	209
6.22	Results for a two source configuration with (20 ms on/20 ms off) VBR background in a WAN (ERICA)	210
6.23	Results for a two source configuration with $(1 \text{ ms on}/1 \text{ ms off})$ VBR background in a WAN (ERICA+)	211
6.24	Results for a two source configuration with $(20 \text{ ms on}/20 \text{ ms off})$ VBR background in a WAN (ERICA+)	212
6.25	Results for one persistent source and one bursty source (small bursts) in a WAN (ERICA)	213
6.26	Results for one persistent source and one bursty source (medium bursts) in a WAN (ERICA)	214
6.27	Results for one persistent source and one bursty source (large bursts) in a WAN (ERICA)	215

6.28	Results for one persistent source and one bursty source (large bursts) in a WAN (ERICA with bidirectional counting)	216
6.29	Results for one persistent source and one bursty source (large bursts) in a WAN (ERICA with averaging of number of sources)	217
6.30	Results for one persistent source and one bursty source (small bursts) in a WAN (ERICA+)	218
6.31	Results for one persistent source and one bursty source (medium bursts) in a WAN (ERICA+)	219
6.32	Results for one persistent source and one bursty source (large bursts) in a WAN (ERICA+)	220
6.33	Results for ten ACR retaining sources in a WAN (ERICA) $\ . \ . \ .$.	221
6.34	Results for ten ACR retaining sources in a WAN (ERICA with per-VC CCR measurement)	222
7.1	Effect of ACR Retention/Promotion	225
7.2	Multiplicative vs Additive Headroom	232
7.3	Regions of Operation	234
7.4	Joint Source-Based UILI Proposal vs Count-Based Proposal	239
7.5	Five Sources Configuration	242
7.6	Five Source Configuration: Rates, Low ICR = 1.0 Mbps, Headroom = 1 Mbps, MaxSrcRate = 10 Mbps for 200 ms	243
7.7	Burst Response Time vs Effective Throughput	244
7.8	Closed-Loop Bursty Traffic Model	246
7.9	Client-Server Configuration With Infinite Source Background	247
7.10	Effect of UILI on Small Bursts	248

7.11	Effect of UILI on Medium Bursts	250
7.12	Effect of UILI on Large Bursts	251
7.13	An event trace illustrating need for a rescheduling mechanism \ldots .	254
7.14	The Rescheduling Mechanism	254
8.1	TCP Window vs Time using Slow Start	259
8.2	Timeout and Duplicate Packets in Slow Start	260
8.3	At the ATM layer, the TCP traffic results in bursts. The burst size doubles every round trip until the traffic becomes continuous	262
8.4	n Source + VBR Configuration	267
8.5	Cell/Packet Drop Points on a TCP/ATM connection	269
8.6	Two TCP Source Configuration, Buffer=4096 cells, TBE=1024 \ldots	270
8.7	Two TCP Source Configuration, Buffer=2048 cells, TBE=512	271
8.8	Two TCP + One VBR Configuration, TBE vs Buffer	273
8.9	Five TCP + One VBR Configuration, TBE vs Buffer	274
8.10	Unfairness due to TailDrop	277
8.11	Out-of-phase Effect (TCP over ABR)	284
8.12	Clustering Effect (TCP over ABR)	284
8.13	Overview of MPEG-2 Transport Streams	313
8.14	The I, P and B frames of MPEG-2	314
8.15	Piecewise constant nature of MPEG-2 Single Program Transport Stream	s315
8.16	Multiplexing MPEG-2 Single Program Transport Streams (SPTSs) over VBR	318

8.17	The "N Source + VBR" Configuration with a satellite link	327
8.18	The "N Source + VBR" Configuration with satellite links and long feedback delays	329
9.1	End-to-End Control vs VS/VD Control	338
9.2	Per-class queues in a non-VS/VD switch	340
9.3	Per-VC and per-class queues in a VS/VD switch (a) $\ldots \ldots \ldots$	341
9.4	Per-VC and per-class queues in a VS/VD switch (b) $\ldots \ldots \ldots$	341
9.5	Multiple unidirectional VCs in a VS/VD switch $\ldots \ldots \ldots \ldots$	343
9.6	Multiple bi-directional VCs in a VS/VD switch $\ldots \ldots \ldots \ldots$	343
9.7	Rate calculations in VS/VD switches	345
9.8	Four methods to measure the rate of a VC at the VS/VD switch	347
9.9	Two methods to measure the input rate at the VS/VD switch $\ . \ . \ .$	348
9.10	Three methods to update the allocated rate	349
9.11	Two adjacent loops may operate at very different rates for one feedback delay	351
9.12	2-source+VBR configuration. Unconstrained queues due to overallo- cation	353
9.13	Parking lot: best VS/VD option converges fast	355
9.14	Link congestion and allocated rate update: viable options	356
9.15	Response time vs Convergence time	358
C.1	Flow Chart of the Basic ERICA Algorithm	407
C.2	Flow Chart for Achieving Max-Min Fairness	408

С.3	Flow Chart of Bi-Directional Counting	409
C.4	Flow Chart of averaging number of active sources (part 1 of 2)	410
C.5	Flow Chart of averaging number of active sources (part 2 of 2)	411
C.6	Flow chart of averaging of load factor (method 1) $\ldots \ldots \ldots$	412
C.7	Flow chart of averaging of load factor (method 2)	413