

- 1. Challenges: Distance, Velocity, Spectrum
- 2. L-DACS1 vs. L-DACS2
- 3. Design Issues: Availability, Preemption, Chaining
- 4. Interference Mitigation

Aeronautical Datalinks: Challenges

Very long distances:

Washington University in St. Louis

- > WiFi covers 100 m
- > WiMAX cells are 1km in urban and 3 km in suburban areas
- > L-DACS needs to cover 360 km (200 nautical miles)
 - □ Limited Power \Rightarrow High bit error rate or very low data rate \Rightarrow Low Spectral efficiency (2 bps/Hz is a challenge)
 - □ Long turn-around times ⇒ Large guard times (360 km = 1.2 ms one-way at speed of light)

Datalinks Challenges (Cont)

□ Very High Mobility:

- > WiFi isn't designed for mobility (200m at 60 km/h = 12 s between handovers)
- > WiMAX is optimized for 0-10 km/h, operates up to 120 km/h
- > L-DACS has to operate up to 600 nm/h (1080

Issue 1: Spectrum

- Lower frequencies are more crowded.
 HF (3-30MHz) is more crowded than VHF (30-300MHz).
 VHF is more crowded than L-band.
- Higher frequencies have more bandwidth and higher data rate
 Trend: Move up in Frequency
- □ Effect of Frequency on signal:

$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$$

Attenuation ∞ (frequency)²(distance)²
 ⇒ Lower Frequencies have lower attenuation,
 e.g., 100 MHz has 20 dB less attenuation than 1GHz
 ⇒ Lower frequencies propagate farther
 ⇒ Cover longer distances

Spectrum (Cont)

- Doppler Shift = velocity/wavelength
 ⇒ Lower frequencies have lower Doppler shift
 Higher Frequencies not good for high-speed mobility
 Mobility ⇒ Below 10 GHz
- □ Higher frequencies need smaller antenna Antenna ≥ Wavelength/2, 800 MHz \Rightarrow 6"
- Higher frequencies are affected more by weather Higher than 10 GHz affected by rainfall
 60 GHz affected by absorption of oxygen molecules

L-DACS: Common Features

- L-band Digital Aeronautical Communications System
- □ Type 1 and Type 2
- □ Both designed for Airplane-to-ground station communications
- □ Airplane-to-airplane in future extensions
- Range: 200 nautical miles (nm)
 (1 nm =1 min latitude along meridian = 1.852 km =1.15 mile)
- □ Motion: 600 knots = 600 nm/h = Mach 1 at 25000 ft
- □ Capacity: 200 aircrafts
- Workload: 4.8 kbps Voice+Data
- □ All safety-related services
- Data=Departure clearance, digital airport terminal information, Oceanic clearance datalink service

L-DACS1

- OFDMA: Similar to WiMAX
- □ Multi-carrier: 50 carriers 9.76 kHz apart
- □ Use two channels of 498 kHz each

L-DACS2

- **Based on GSM**
- GSM PHY, AMACS MAC, UAT Frame Structure
- Uses Gaussian Minimum Shift Keying (GMSK) modulation as in GSM
- GSM works at 900, 1800, 1900 MHz ⇒ L-DACS2 is in lower L-band close to 900MHz
- □ Tested concept
- □ Price benefit of GSM components
- Uses basic GSM not, later enhanced versions like EDGE, GPRS, ...

These can be added later.

Ref: http://en.wikipedia.org/wiki/Gaussian_Minimum_Shift_Keying#Gaussian_minimum-shift_keying

L-DACS1 vs. L-DACS2

- 1. L-DACS1 with OFDM is more scalable than L-DACS2 with single carrier modulation.
- L-DACS1 also has better spectral efficiency because it can use adaptive modulation and coding (QPSK through 64 QAM).
- 3. Multi-carrier design of L-DACS1 is also more flexible in terms of spectrum placement.
- 4. Multi-carrier design of L-DACS1 is also more suitable for interference avoidance and co-existence than L-DACS2.
- 5. The TDD design of L-DACS2 is better suited for asymmetric data traffic than FDD design of L-DACS1.
- 6. The cyclic prefix and subcarrier spacing of L-DACS1 need to be analyzed to check if it will work at aircraft speeds.
- 7. GSM900 stations may cause significant interference with the L-DACS systems. Again L-DACS2 is more susceptible to such interference. Ref: See Related paper.

UAS Datalink Design Issues

- 1. Availability
- 2. Networked or non-networked (Defense): Support both
- 3. Preemption: Preempt non-critical to make room for critical
- 4. Chaining: Aircraft-to-Aircraft
- 5. Compatibility with manned aircrafts: Sharing the same airspace

	Availability: Traditional Definition
	Availability = P(System being up) = <u>Up Time</u> Total Time
	Problems:
A.	
B.	
C.	
	All of the above are 90% availability
	No distinction for large downtime or small uptime
	Revised Definition: Ignore small uptime
	Availability2=P(System being up >Ta)
	$= \Sigma (Uptime Uptime > Ta)$
	Total Time
Washi	ington University in St. Louis http://www.cse.wustl.edu/~jain/talks/uas_dlt.htm ©2011 Raj Jain

Continuity: Definition 1

□ Continuity = P(Transaction completion) Transaction Time = Tc =P(Uptime>Tc) = Σ (Uptime|Uptime > Tc) Total Time

- □ This is the current definition of continuity.
- □ This is same as Availability2 with Ta replaced by Tc.
- □ Problems:
 - > Ignores large downtimes
 - > It is really not the probability of transaction completion

- 99.9-percentile downtime and 0.1-percentile uptime are more meaningful than any metric based on total uptime or downtime
- □ Alternately:
 - Probability of downtime > Tc = 0.999 Probability of Uptime <Ta = 0.001</p>

Availability Summary

- For time critical services, sums are meaningless (Difficult to assess risk)
- Statistics related to individual downtime or uptime are more meaningful
- Percentiles of downtime are meaningful in risk assessment.

Issue 4: Interference

Interfering Technologies:

- 1. Distance Measurement Equipment (DME)
- 2. Universal Access Transceiver (UAT)
- 3. 1090 Extended Squitter (ES)
- 4. Secondary Surveillance Radar (SSR)
- Joint Tactical Information Distribution System (JTIDS)
- 6. Groupe Speciale Mobile (GSM)
- 7. Geostationary Navigation Satellite System (GNSS)

GSM900 Interference

□ Maximum allowed EIRP 62 dBm

- > 43 dB power + 19 dBi Antenna gain
- > 37 dB power + 25 dBi Antenna gain
- □ -80 dBc power at 6 MHz from the carrier
- **GSM900** Interference:
 - > L-DACS1 = -22dBm
 - ≻ L-DACS2= -10.8 dBm
 - (L-DACS2 uses a band close to GSM)

Bluetooth and WiFi Coexistence

- Bluetooth frequency hops in 1 MHz carriers over 2402 2480 MHz (79 MHz total)
- WiFi uses OFDM with 52 subcarriers in 20 MHz channels in 2402-2480 MHz (3 non-overlapping channels)
- □ Most computers have both Bluetooth and WiFi
- □ Collaborative Strategies: Two networks on the same device
- □ Non-Collaborative Strategies: No common device

Collaborative Coexistence Strategies

- Both networks on the same equipment (Laptop or IPhone):
 - 1. Time Division: Bluetooth skips slots when WiFi is busy, WiFi reserves time for Bluetooth between Beacons
 - 2. Packet Traffic Arbitration: Packets are prioritized and queued on a common queue for transmission
 - 3. Notch Filter: WiFi OFDM does not use subcarriers to which Bluetooth hops

Non-Collaborative Coexistence Strategies

- Measure noise level and error rate:
 Random bit errors \Rightarrow Noise
 - 1. Adaptive Packet Selection: Bluetooth uses coding (FEC and Modulation) depending upon interference. Use FEC only if noise. No FEC if interference.
 - 2. Master Delay Policy: Bluetooth keeps track of error rates on various frequencies. Refrains from transmission on frequencies where interference is high
 - 3. Adaptive frequency hoping: Hop over only good frequencies
 - 4. Adaptive Notch Filter on WiFi

- 1. Designing UAS wireless datalink is challenging because of long distances, high-velocity, and spectrum availability issues
- 2. L-DACS1 vs. L-DACS2: L-DACS1 uses√OFDM with× FDD while L-DACS2 uses ×TDM with √TDD
- 3.Traditional definitions of availability/continuity are not suitable for sense and avoid high-risk systems. Percentiles are better.
- 4. Other UAS datalink design issues include networked/nonnetworked scenario, pre-emption, aircraft-to-aircraft chaining, and compatibility with manned systems
- 5. Interference with GSM and other systems can be avoided using collaborative and non-collaborative approaches.

Related Paper

Raj Jain, Fred L. Templin, Kwong-Sang Yin, "Analysis of L-Band Digital Aeronautical Communication Systems: L-DACS1 and L-DACS2," IEEE Aerospace Conference, Big Sky, Montana, March 5-12, 2011,

http://www1.cse.wustl.edu/~jain/papers/ldacs.htm