Current Issues in
ATM Forum Traffic
Management Group
Raj Jain
Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

- □ Effect of VS/VD
- GFR
- Virtual Paths
- □ ITU vs ATMF
- **CDV** Accumulation
- **CLR** with EPD

Overview (Cont)

Joint Work with other Groups
TM and Net Mgmt
ABR API
TM and RBB
TM and SAA
TM and Test

Virtual Source / Virtual Destination (VS / VD)

- Segments the end-to-end ABR control loop.
- Coupling between loops is implementation specific.
- □ VS/VD can help in buffer management across the network.
- ABR switches separated by non-ATM network could also implement VS/VD.

The Ohio State University

Simple VS/VD Model

Desired input rate to class queue is also fed back to the upstream switch.

Problem:

- Transient per-VC queues cannot drain. Input rate $s_{ij} = Output$ rate r_{ij}
- Queues that build up during open loop phase do not drain.

Per-VC ERICA+

BRM received :

• $ER_{ij}^{external} := ER in RM cell$

□ FRM received :

 \circ ER in RM := ER_{ij} feedback

□ At the end of each averaging interval :

•
$$ER_{ij}^{internal}$$

:= $Min\{ Max (r_{ij}/Overload, g(q_i)R_i/N), ER_{ij}^{external} \}$
• Output rate
 $ACR_{ij} = r_{ij} := fn\{ER_{ij}^{internal}, end system rules\}$
• $ER_{ij}^{feedback} := g(q_{ij})r_{ij}$
The Ohio State University
Raj Jain

VSVD Results

- □ VS/VD switch architecture:
 - Per-VC queues drain at an ACR based only on the external congestion and class Q
 - Feedback to upstream queue must include external congestion, class Q, and per-VC Q.
 - Each queue must monitor its input and output rate.
- Action (Feb'98): Added a sample VS/VD scheme to baseline text

- ❑ With correct implementation of VS/VD: Maximum queue at each switch
 ≤ Bandwidth delay product of the previous loop
 ⇒ Can help isolate long-delay hops from short-delay hops.
- Workgroup switches on satellite paths will not need buffering proportional to round-trip even if they are the bottleneck.

VS/VD: Other Issues

□ Effect on ABR parameters

Ref: 96-1639

The Ohio State University

GFR

□ Status of Feb'98 Meeting

□ Signaling Parameter for GFR

- O PCR₀₊₁
- \circ MCR₀
- MBS
- MFS = Min{CPCS PDU Size, MBS}
- Tagging
- Best Effort
- □ Attempt to replace GFR with VBR.4 failed
- Attempt to include flow charts for conformance was tabled.

The Ohio State University

Virtual Paths

- □ VC to VP Aggregation
- **EFCI** State

The Ohio State University

VC to VP Aggregation

$\Box VP = \Sigma VCs$

- □ VP Traffic contract $\neq \Sigma$ VC traffic contracts
- $\Box QoS of VP = QoS of most demanding VC?$
- An appendix has been added to TM5.0 describing the problem (Feb'98). No known general solution.
- □ Ref: 97-0714, 97-0624, 97-0168R2, 95-1519

- □ VP sources should not reset EFCI
- □ Solution 1: Use VS/VD at VP ends
- Solution 2: Only reflect EFCI at VP source. Not full VD.

ITU vs ATMF

- □ ATMF vs ITU Classes
- QoS Parameters

The Ohio State University

ATMF VBR Definitions

□ VBR.1 ⇒ Non-conforming cells are discarded

- □ VBR.2 ⇒ CLP=0 that overflow SCR bucket are dropped, CLP=1 that pass PCR bucket are eligible
- □ VBR.3 ⇒ CLP=0 that overflow SCR bucket are tagged and then eligible for best effort service

ITU QoS Classes

- High priority cell vs aggregate stream CLR₀ vs CLR₀₊₁
- □ I.356 applies only to public networks
 - Class 1: Delay & CLR₀₊₁
 - Class 2: CLR₀₊₁
 - Class 3: CLR₀
 - Unspecified Class

ATMF vs ITU Classes

- □ Five Service Categories vs four QoS Classes
- \Box CBR = Class 1
- \Box rt-VBR.1 = Class 1
- \Box rt-VBR.2 = ?
- \Box rt-VBR.3 = ?
- \Box nrt-VBR.1 = 2
- \Box nrt-VBR.2 = 3
- \Box nrt-VBR.3 = 3
- $\Box ABR = 3, U$

 $\Box UBR = U$ The Ohio State University

QoS Parameters

- ATM Forum uses maxCTD and peak-to-peak CDV
- □ ITU uses meanCTD and 2-pt CDV
- $\square MaxCTD = CTD_{1-\alpha}$
- $\Box MeanCTD = 1/n \Sigma CTD$
- □ Peak-to-peak CDV = $CTD_{1-\alpha} CTD_{fixed}$
- $\square 2-pt CDV = CTD_{1-\alpha/2} CTD_{\alpha/2}$
- Ref: 97-0895, 97-0290, 97-0562, 97-0427, 97-0404, 96-0369

CDV (Cont)

- $\Box Worst case \Rightarrow Overestimate$
 - \Rightarrow Underutilization, Blocking
- Suggest using Chernoff method or Markovian Inequality
- □ Assumes local delays at switches are independent.
- Assumes delays at each switch are gamma distributed.
 Switch Delay pdf: f(t) = λ^rt^{r-1}e^{-λt}/Γr
 λ = scale parameter of the switch delay
 - r = shape parameter of the switch delay

CDV Algorithm

- $\Box \ s_i = \min_{1 < j \le i} \lambda_j / c, c > 1$
- □ If s_i is less than requested end-to-end CDV, accumulate $r_i \log(\lambda_i/(\lambda_i - s_i)))$
- □ How do you select c? Need more guidance.
- **Ref:** 97-0293

CLR with EPD

Cells dropped due to EPD be not counted in CLR

The Ohio State University

Joint Work with Other Groups

- **TM** and Net Mgmt
- □ ABR API
- **TM** and **RBB**
- **TM** and SAA
- **TM** and Test

TM and Net Mgmt

- □ Management of ABR Service
- Count invalid RM cells, valid RM cells
- □ Invalid: BN=1 and DIR=0, ER>PCR, ...
- **Ref:** 97-0478R2
- □ Traffic Descriptors for CBR, VBR, ABR, UBR
- CBR Traffic Descriptor: PCR, SCR, MBS, CDVT, pto-p CDV, max CTD CLR
- **Ref:** 97-0923
- Accumulative Parameters: FRTT, maxCTD, peak-topeak CDV

The Ohio State University

ABR API

- Query and Set: PCR, MCR, ICR, RIF, RDF, MCRmin
- **Query:** FRTT, TBE
- □ Set: ER (<PCR), MCR
- Query: ACR
- **Ref:** 97-0999*, 97-1020*, 97-1100*

Querying ACR

- When should the applications be notified of ACR change?
- Suggestion: two threshold crossing
- **Ref:** 97-1020*

TM and RBB

- RBB: Shared access over cable, asymmetric links
- Simplification of traffic parameters for residential users
- □ Effect of dual delays in cable modems
- **Ref:** 97-1081

TM and SAA

VBR Video

- Given mean, PCR of a video stream, how does one request SCR, MBS, ...
- □ Effective BW = $(1-\alpha)$ Mean+ α PCR
- \Box Higher Effective BW \Rightarrow Lower MBS
- **Ref:** 97-0756*, 97-0733, 97-0797
- □ Service Category for Video: CBR, VBR, ABR, ABT

- □ Virtual Paths: Not easy to compute QoS
- □ ITU classes vs ATMF service categories
- **CDV** Accumulation: Chernoff Inequality

Future Issues

- □ ABR Policing
- Multipoint
- □ ABR Fairness and Pricing
- Effective Number of Active Sources
- Varying Phy Bandwidth
- □ TCP/IP over ATM
- FUNI Conformance