

Our Team

Current: $\mathbf q$

- Shivkumar Kalyanaraman
- Rohit Goyal \overline{a}
- Sonia Fahmy
- Arun Krishnamoorthy
- Manu Vasandani
- **Past**: \mathbf{a}
	- Fang Lu
	- Ram Viswanathan

- **Q MIT Scheme, CAPC2, UCSC, OSU, and others**
- **Q** ERICA
- \Box ERICA+
- □ Unpublished modifications of ERICA

Disclaimer

- \Box Some of the information presented here has not been published and is subject of a patent application to be filed.
- \Box This information is being furnished under a non-disclosure agreement.
- **Q** Distribution is restricted.

MIT Scheme

- \Box Fair Share = (Capacity -Σ Underloading VCs' ER)/ (# of Bottlenecked VC's)
- **□** Fair Share > VC's ER \Rightarrow Underloading VC
- Fair Share < VC's $ER \implies$ Bottlenecked VC
- □ Fair share depends upon bottlenecked VCs and bottlenecked VCs depends upon fair share \Rightarrow Recursive definition
- \Box ER at this switch = Min{VC's ER, Fair Share}
- **q** Problem:
	- \Box O(*n*) computation
	- ^q No load measurement ⇒ Inefficiency Example: Two sources with ER of 77.5 Mbps One bottlenecked at 10 Mbps \Rightarrow Total load = 87.5 Mbps

OSU Scheme

q **Goals**:

- \Box O(1) computation
- ^q Measured load (not just based on ER's)

q **Key Innovations**:

- ^q Overload measured by rate and not by queue length
- ^q Introduced the concept of
	- : Averaging interval
	- : Target utilization
	- : Target utilization band (TUB) 0.90 \pm 0.05

OSU Scheme (Cont)

q **Algorithm**:

 \Box Load = Input rate/Target Rate

 \Box IF outside TUB THEN indicate Load factor [Now send Source rate/load factor in ER field] ELSE Compute fair share and Indicate $Load/(1+\Delta)$ to underloading sources and $Load/(1-\Delta)$ to overloading sources

p Problem: Used time-based RM cell transmission

UCSC Scheme

- A modification of the MIT scheme
- 1. Use minimum of ER_in_Cell and CCR $Demand_i = Min\{ER_in_Cell, CCR\}$
- 2. Instead of iterating on fair share computation right away, iterate on successive RM cells
- □ If a VC is currently "bottlenecked" assume unbottlenecked: Threshold = Σ Other bottleneck VCs' ER/(# of Bottleneck $VC's -1)$
- **□** If a VC is currently "not bottlenecked" assume bottlenecked: Threshold = (This VC's $ER + \Sigma$ Other bottleneck VCs' ER)/(# of Bottleneck VC's $+1$)

UCSC Scheme (Cont)

- 3. Fair Share =Max{Fair Share, Threshold}
- 4. Adjust the VC's classification by comparing it with the new fair share: $\text{Bottlenecked}_{i} = \text{Demand}_{i} > \text{Fair Share}$ Allocation_i = Min{Demand_i, Fair Share}

 $ER_in_Cell = Min\{ER_in_Cell, FairShare\}$

UCSC Scheme (Cont)

5. Remember VC with the largest allocation. This should always be bottlenecked.

IF Allocation $i > max$ allocation

THEN

 $Max_VC = i; max_allocation = Allocation_i;$

IF state \neq bottlenecked

```
THEN State = Bottlenecked;
```

```
N_Bottleneck = N<sub>B</sub>ottleneck + 1;
```
END IF

END IF

```
IF max_VC = i and Allocation \leq Max_allocation
```

```
THEN Max_allocation = \text{Allocation}_{i}
```
The Ohio State University **Example 2** and the China of the China of the Raj Jain

UCSC Scheme (Cont)

q **Problems**:

 \Box Sets ER in the forward direction

^q No load measurement

 \Rightarrow May not work if source bottlenecked.

□ Need to measure active VC's

HKUST Scheme

- **Q** Modification of MIT Scheme
	- ^q Use MIT scheme in both forward and reverse direction
	- \Box Reset ER field at the destination
- **□ Claims**: Fast convergence. Fair.

Problems:

- \Box O(n) complexity.
- ^q No load measurement ⇒ May not work if source bottlenecked.
- \Box Need to measure active VC's.
- \Box Not compatible with TM4.0 (resetting ER to PCR at the destination is not allowed)

CAPC2 Scheme

- Congestion Avoidance Using Proportional Control Ver 2
- □ Borrows some concepts from OSU scheme and ERICA:
	- \Box Monitor input rate.
	- \Box Set target utilization
	- \Box Underload δ = 1 Input Rate/Target Rate
- **□** Fair Share is dynamically adjusted to get load close to one IF underload > 0

THEN Fair Share = Fair Share \times Min{1+ δ R_{up}, ERU_{max}}

ELSE Fair_share =Fair Share \times Max $\{1+\delta R_{down}$, ERD_{Min} $\}$

 R_{Up} and R_{Down} control the convergence rate. ERU_{Max} and ERD_{min} limit the oscillations.

The Ohio State University Raj Jain

ERICA Scheme: Basic

- \Box Explicit Rate Indication for Congestion Avoidance
- \Box Set target rate, say, at 95% of link bandwidth
- \Box Monitor input rate and number of active VCs $Overload = Input rate/Target rate$
- This VC's Share $=$ VC's Current Cell Rate/Overload
- \Box Fair share = Target rate/ Number of Active VCs
- q ER = *Max(*Fair share, This VC's share)
- \Box ER in Cell = Min(ER in Cell, ER)

ERICA Features

- Uses measured overload
	- \Rightarrow If sources use less than allocated capacity, all unused capacity is reallocated to others.
- **□** Two parameters: Target utilization, Averaging interval
- \Box Simple
- \Box Order (1) computation
- Fast response due to optimistic design \mathbf{a}
- Fairness is improved at each step. \mathbf{a} Even under overload.
- Converges to efficient operation in most cases
- Max-min fair in most cases

Innovation: Use forward CCR

- **Q Problem:** CCR in backward direction is too old
- **Q Solution:** Read CCR in forward RM cells. Give feedback in backward RM cells.
- **Effect:** Shorter control loop for active VCs
	- ⇒ Faster convergence

Control vs Feedback Delay

- **□** Fundamental principle of control theory:
- Q Control faster than feedback \Rightarrow Instability Control slower than feedback \Rightarrow non-responsiveness Ideal: Control rate \approx Feedback rate Control delay = feedback delay = monitoring delay

The Ohio State University Raj Jain

Innovation:

Same Feedback in One Interval

- **Problem**: Oscillations for high-rate sources
- **Reason:** Mismatched control and monitoring intervals
	- \Box Control Interval = Inter-RM cell time = Feedback Interval
	- \Box Monitoring Interval = Averaging interval
- **□ Solution**: Do not change feedback in one averaging interval.

Innovation: Fair Share First

- **Problem:** Transient overloads at state changes
- **□ Solution**: Source below Fair Share go only up to fair share first.

IF CCR < Fair Share and $ER_{\text{Calculated}}$ > Fair Share

THEN $ER_{Calculated} = Fair$ Share

□ Example: Two sources {10, 10}, {50,10}, {90,50}...

Option: Per-VC Rate Measurement

- **Problem:** Some VCs are bottlenecked at the source CCR does not reflect source rate
- q **Solution**:
	- ^q Count number of cells in each VC
	- \Box Source Rate = Number of Cells Seen/Averaging Interval
	- \Box This VC's Share = Source Rate/Overload

q **Advantage**:

Q Also handles sources not using their allocation. \Rightarrow Switch based "use it or lose it"

Modification: Time + Count Based Averaging

- **Q Problem:** Averaging over a fixed interval ⇒ Sudden overload can cause queue build up
- **□ Solution**: Average over *t* ms or *n* cells whichever happens first.

Innovation: ERICA with VBR

- Monitor VBR usage $\mathbf q$
- ABR capacity $=$ Target Rate VBR input rate q
- Overload factor $=$ ABR input rate/ABR capacity \mathbf{a}
- This VC's share = VC's CCR/overload factor \overline{a}
- Fair share $=$ ABR capacity/Number of active ABR VCs $\mathbf q$
- $ER = Max\{Fair share, This VC's share\}$ $\mathbf q$
- NOTE: Target utilization applies to total link load \mathbf{a} ABR capacity = Target Util. \times Link Rate - VBR output rate and not
	- ABR capacity = Target Util. \times (Link Rate VBR output rate) \Rightarrow VBR Output rate \lt Target utilization

Out-Of Phase Effect

- **□** Bursty load and backward RM (BRM) cells are often out of phase.
- \Box When there is load in the forward direction, there are no BRMs.
- \Box By the time the switch sees BRMs, there is no load in the forward direction.
- \Box The above effect disappears when the bursts become larger than RTT

Innovation: Bidirectional Counting

- **Q Problem:** Data cells or RM cells may not be seen in one direction. Resulting in undercount and overallocation.
- **□ Solution**: A VC is active if any of the following holds:
	- \Box data cells seen in the forward direction in the last averaging interval
	- □ Data cells seen in the forward direction in this averaging interval
	- \Box BRMs seen in the reverse direction
- **Q Option:** Reset CCR = 0 for all inactive sources at the beginning of an averaging interval

The Ohio State University **Raj Jain** □ Not necessary if per-VC source rate measurement is used

Unfairness in ERICA

- $R_{\text{Calculated}} = \text{Max} \{ \text{FairShare}, \text{CCR/overload} \}$
- ERICA becomes unfair if ALL of the following conditions hold true:
	- Q Overload = 1
	- □ Some VCs are bottlenecked at other switches and therefore have CCRs below fair share
	- ^q All VCs that are not bottlenecked at other switches have a CCR greater than the fair share
- **□** Under the above condition, the CCRs do not change at all. The allocation stabilizes.

But the stable operating point may not be max-min fair.

The Ohio State University Raj Jain

Innovation: Fairness Fix

q **Solution**:

- q All VCs that are bottlenecked at this switch must get the same allocation = maximum allocation
- \Box Remember maximum ER in the previous interval
- The Ohio State University Raj Jain \Box IF overload $< 1+\delta$ THEN $ER_{Calculated} = Max\{FairShare, CCR/Overload, Max_ER\}$ ELSE ER $_{Calculated}$ = Max{Fair Share, CCR/Overload} \Box **Example**: On Link 2, Fair Share $= 50$ \Box {10, 10, ..., 10, 60, 80}, Load = 1, ER=10,80,80 \Box {10, 10, ..., 10, 80, 80}, Load = 17/15, ER=10, 70.6, 70.6 \Box {10, 10, ..., 10, 70.6, 70.6}, Load = 1.008, ER=10, 70.03, 70.03

Is Low Queue Length Good?

 \Box Queue length is close to 1. Not good if bandwidth becomes available suddenly You can't use BECN to ask sources to increase Low rate sources may have long inter-RM cell times

- **Q** Link utilization is 90% or below May not be acceptable for high-cost WAN links.
- \Box Very high queue length is also bad.

Innovation: ERICA with Queue Control

- \Box Target utilization is dynamically changed.
- During steady state: Target utilization $= 100\%$
- During overload the target may be low, e.g., 80%
- \Box During underload the target may be high, e.g., 110%
- \Box Available Bandwidth = fn(Unused bandwidth, Queue length, queue length goal)
- **Q** Unused bandwidth $=$ Link Rate VBR output rate
- \Box Rest is similar to ERICA

Innovation: Use Queue Delay Threshold

- \Box Since available bandwidth (AB) varies dynamically, a queue of 30 may be too big when AB is 1 Mbps but too little when AB is 100 Mbps.
- **□** Use queue delay instead of queue length Queue Delay = Queue length /Available bandwidth
- Available Bandwidth $=$ fn(Unused bandwidth, Queue length, queue delay goal)

Sample Queue Control Function 1

Sample Queue Control Function 2 Capacity Multiplication Factor

Sample Queue Control Function 3

Advantage of Q-Control

Q Can tolerate errors in measurements:

^q Number of active sources

^q VBR load

 \Box ABR input rate

Allows n-VC TCP operation with buffers $\frac{1}{2}$ 1 × RTT

The Ohio State University Raj Jain

- Both input rate and queue measurements are required. Cannot rely on declared CCRs only. Per-VC source rate measurement required in some cases.
- Queue control helps overcome measurement errors.
- \Box ERICA has been thoroughly tested by us and others. Source bottleneck, VBR, Bursty TCP sources
- □ Modified ERICA solves the fairness problem.

The Ohio State University Raj Jain

References

- q L. Kalampoukas, A. Varma, K.K. Ramakrishnan, "An efficient rate allocation algorithm for ATM networks providing max-min fairness," Proc. 6th IFIP International Conference on High Performance Networking, HPN'95, September 1995.
- **□** D. Tsang and W. Wong, "A fast switch algorithm for ABR Traffic to Achieve Max-Min Fairness with Analytical Approximation," Submitted to Computer Networks and ISDN Systems, April 1996.
- The Ohio State University Raj Jain q K. Siu and H. Tzeng, "Intelligent Congestion Control for ABR Service in ATM Networks," Computer Communication Review, Vol. 24, No. 5, pp. 81-106, October 1994.

40

- q A. Charny, D. Clark, and R. Jain, "Congestion Control with Explicit Rate Indication," Proc. ICC'95, June 1995.
- R. Jain, S. Kalyanraman, R. Goyal, S. Fahmy, and F. Lu, "ERICA+: Extensions to ERICA Switch Algorithm," AF-TM 95-1346, October 1995.
- R. Jain, S. Kalyanraman, R. Goyal, "Simulation Results for ERICA Switch Algorithm with $VBR + ABR$ traffic," AF-TM 95-0467, April 1995.
- R. Jain, S. Kalyanraman, R. Viswanathan, R. Goyal, "A Sample Switch Scheme," AF-TM 95-0178, February 1995
- R. Jain, S. Kalyanraman, R. Viswanathan, R. Goyal, "Simulation Results for the Sample Switch Scheme," AF-TM 95-0179, February 1995
- q A. Barnhart, "Example Switch Algorithm for TM Spec, AF-TM 95-0195, February 1995.

The Ohio State University Raj Jain

- □ T. Chen, S. Liu, V. Samalam, J. Ormord, and N. Yin, "Examples of switch mechanisms," AF-TM 95-0345, April 1995.
- □ Chang, Golmie, Benmohamed, Su, "An Example of NIST ER Switch Mechanism," AF-TM 95-0695, June 1995.

The Ohio State University Raj Jain