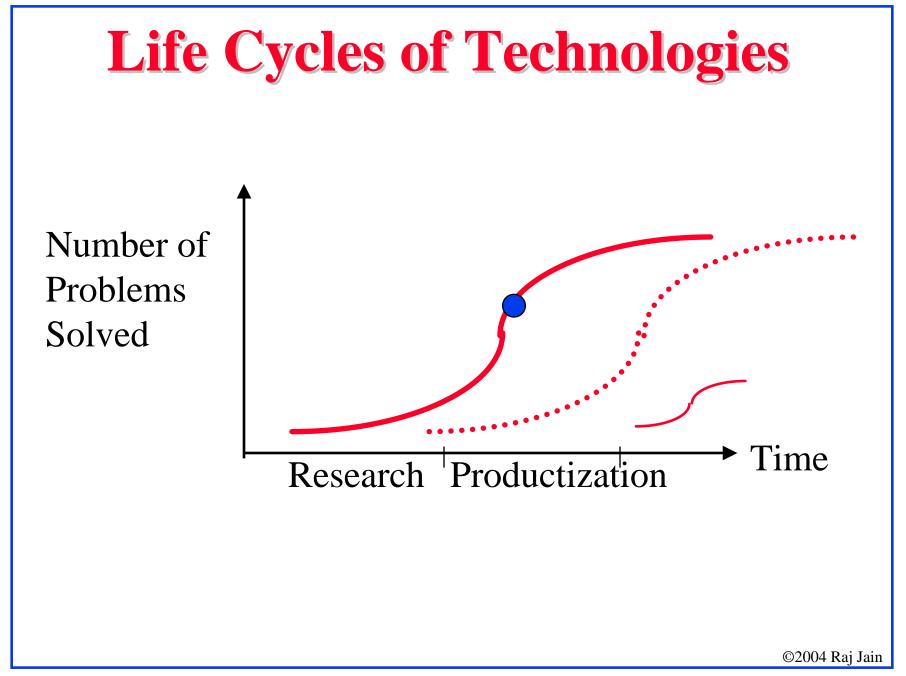
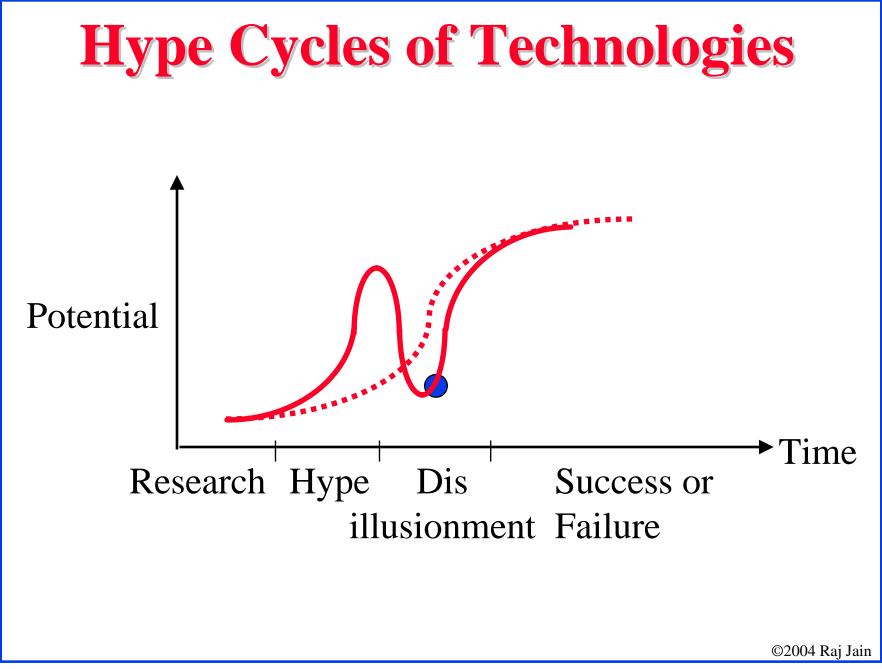
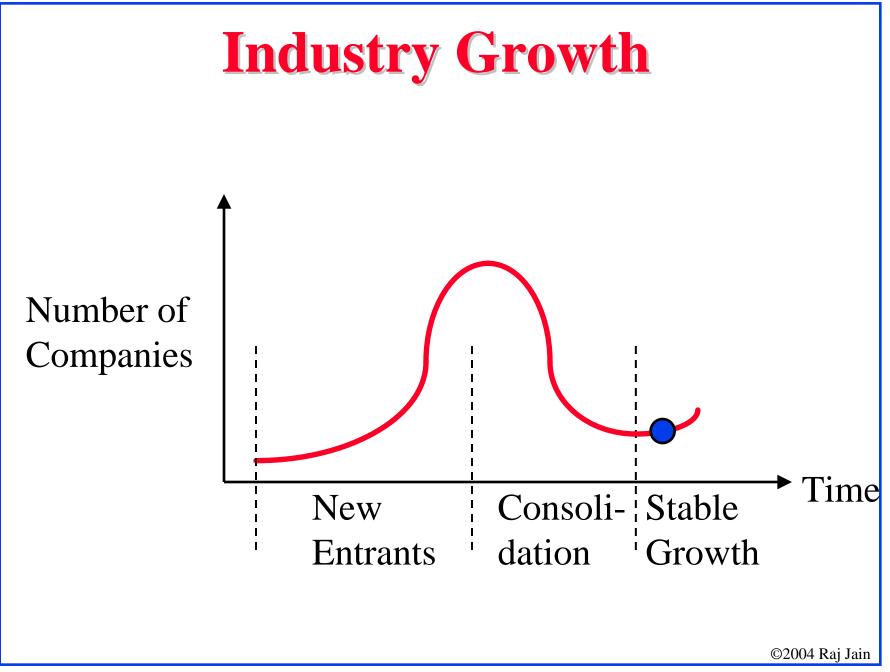
Computer Networking:				
Recent Developments,				
Trends, and Issues				
Raj Jain				
CTO and Nayna Ne San Jose, <u>http://www.cse.wustl.edu/~jain/</u> ;, OH 43210-1277				
These Slides are available at				
http:/www.cse.ohio-state.edu/~jain/talks/spects04.htm International Symposium on Performance Evaluation of Computer and Telecommunications Systems (SPECTS2004)				

and Summer Computer Simulation Conference (SCSC 2004), July 26, 2004, San Jose, CA

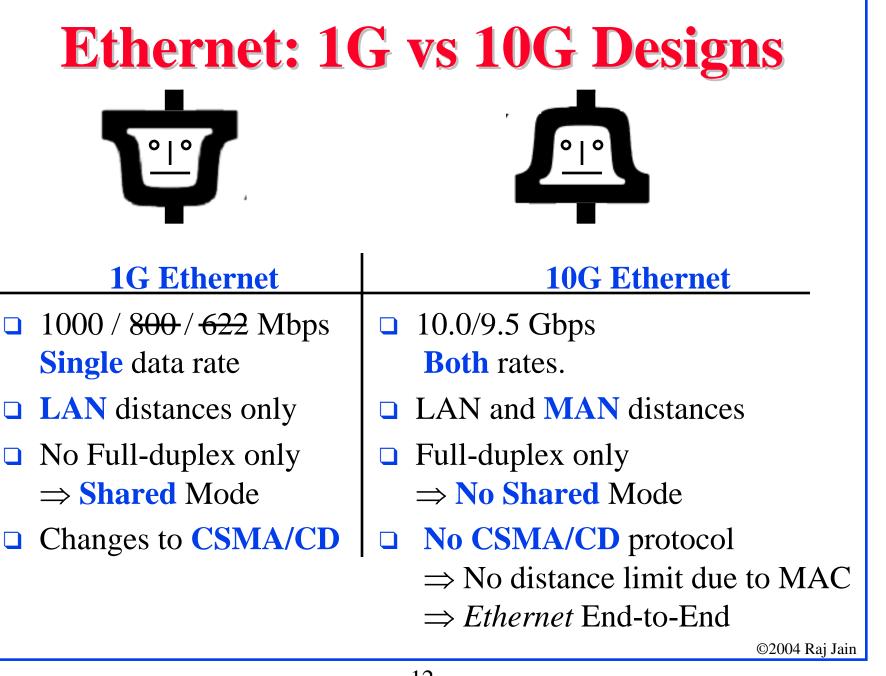



- Impact of Networking
- Life Cycle of Networking Technologies
- □ Top 10 Developments of 2004
- Optical Networking Developments: Core, Metro, Access
- Networking Technologies: Failures vs Successes
- Wireless Networking: Issues


Trend: Back to ILECs

- CLECs to ILECs
 ILEC: Slow, steady, predictable.
 CLEC: Aggressive, Need to build up fast
 New networks with newest technology
 No legacy issues
- 2. Back to Voice
 - CLECs wanted to *start* with data
 - ILECs want to *migrate* to data

 \Rightarrow Equipment that support voice circuits but allow packet based (hybrids) are more important than those that allow only packet based



Top 10 Developments of 2004

- 1. Large investments in Security
- 2. Wireless (WiFi) is spreading (Intel Centrino)
- 3. More Cell phones than POTS. Smart Cell phones w PDA, email, video, images ⇒ Mobility
- 4. Broadband Access is growing faster than cell phones
- 5. Fiber is creeping towards home
- 6. Ethernet extending from Enterprise to Access to Metro ...
- 7. Wiring more expensive than equipment \Rightarrow Wireless Access
- 8. Multi-Protocol Label Switching for traffic engineering
- 9. Voice over Internet Protocol (VOIP) is in the Mainstream
- 10. Multi-service IP: Voice, Video, and Data

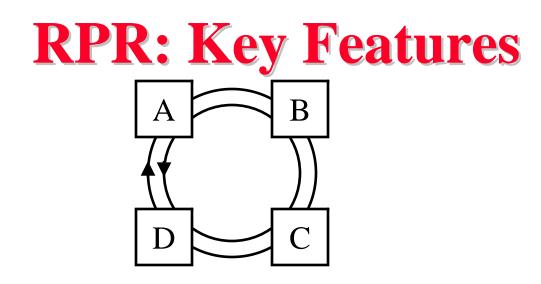
SONET/SDH vs Ethernet

SONET	Ethernet	
51M, 155M,	10M, 100M, 1G,	
622M, 2.4G,	10G	
9.5G		
Fixed	√Any	
No	√Yes	
One	√Multiple	
√Ring	Mesh	
√Yes	No	
√Yes	No	
$\sqrt{50}$ ms	Minutes	
High	√Low	
Telecom	Enterprise	
	$51M, 155M, \\622M, 2.4G, \\9.5G$ Fixed No One \sqrt{Ring} \sqrt{Yes} \sqrt{Yes} \sqrt{Yes} \sqrt{Yes} High	

SONET/SDH vs Ethernet: Remedies

Feature	SONET	Ethernet	Remedy
Payload Rates	51M, 155M,	10M, 100M, 1G,	10GE at 9.5G
	622M, 2.4G,	10G	
	9.5G		
Payload Rate	Fixed	√Any	Virtual
Granularity			Concatenation
Bursty Payload	No	$\sqrt{Y}es$	Link Capacity
			Adjustment Scheme
Payload Count	One	√Multiple	Packet GFP
Protection	√Ring	Mesh	Resilient Packet
			Ring (RPR)
OAM&P	√Yes	No	In RPR
Synchronous	√Yes	No	MPLS + RPR
Traffic			
Restoration	$\sqrt{50}$ ms	Minutes	Rapid Spanning Tree
Cost	High	VLow	Converging
Used in	Telecom	Enterprise	

Enterprise vs Carrier Ethernet


Enterprise

- Distance: up to 2km
- **Scale:**
 - Few K MAC addresses4096 VLANs
- Protection: Spanning tree
- Path determined by spanning tree
- □ Simple service
- $\Box Priority \Rightarrow Aggregate QoS$
- No performance/Error monitoring (OAM)

Carrier

- **Up** to 100 km
- Millions of MAC Addresses
- Millions of VLANs Q-in-Q
- Rapid spanning tree (Gives 1s, need 50ms)
- Traffic engineered path
- **SLA.** Rate Control.
- □ Need per-flow QoS
- □ Need performance/BER

No 100 Mbps Ethernet switches with Q-in-Q, Rate control, Priority

- Dual Ring topology
- Supports broadcast and multicast
- □ Packet based \Rightarrow Continuous bandwidth granularity
- □ Max 256 nodes per ring
- □ MAN distances: Several hundred kilometers.
- Gbps speeds: Up to 10 Gbps
- □ Too many features and alternatives too soon (702 pages)

Networking: Failures vs Successes

- □ 1980: Broadband (vs baseband) Ethernet
- □ 1984: ISDN (vs Modems)
- □ 1986: MAP/TOP (vs Ethernet)
- □ 1988: Open System Interconnection (OSI) vs TCP/IP
- □ 1991: Distributed Queue Dual Bus (DQDB)
- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: Integrated Services (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)

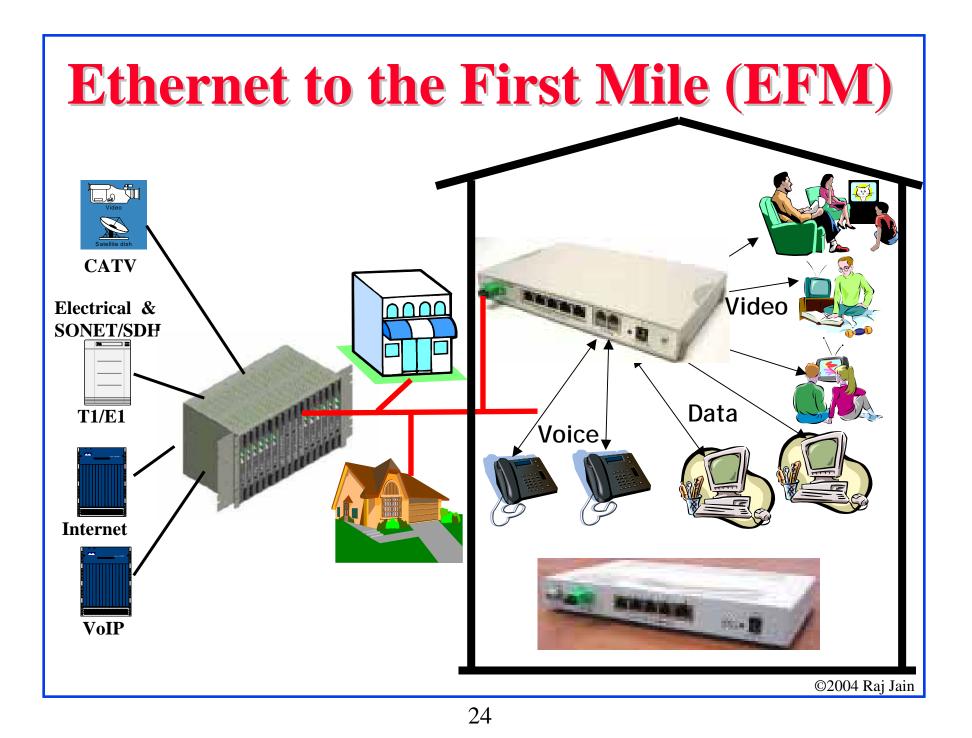
Requirements for Success

- $\Box \text{ Low Cost: Low startup cost} \Rightarrow \text{Evolution}$
- High Performance
- □ Killer Applications
- □ Timely completion
- Manageability
- □ Interoperability

Coexistence with legacy LANs
 Existing infrastructure is more important than new technology

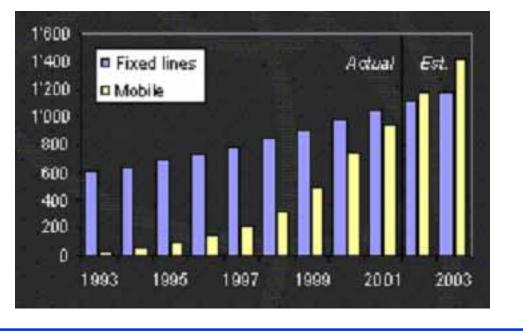
Laws of Networking Evolution

- 1. Existing infrastructure is more important then deploying new technology
 - □ Ethernet vs ATM, IP vs ATM
 - □ Exception: Killer technology, immediate savings
- 2. Modifying existing protocol is more acceptable than new protocols
 - □ TCP vs XTP
 - □ Exception: New applications (VOIP SIP, MEGACO, ...)
- 3. Traffic increases by a factor of X/year
 - Total revenue remains constant (or decreases)


 \Rightarrow Price/bps goes down by \cong X/year (X = 2 to 4)

Access Networks

- 63.84 M DSL subscribers worldwide. 2003 growth rate of 77.8% is more than the peak growth rate of cellular phones.
- □ All countries are racing to a leadership position in broadband
- ❑ Digital-Divide ⇒ 30M subs@10Mbps, 10M@100Mbps in Japan by 2005

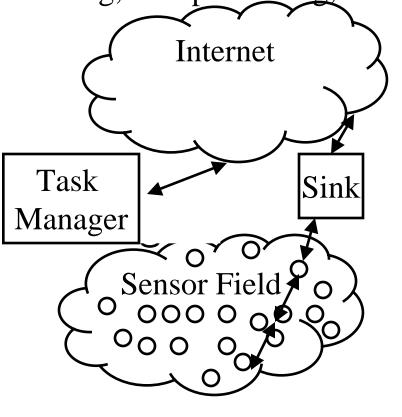

	Country	DSL per		Country	DSL per	
	Country	100 Phones		Country	100 Phones	
1	South Korea	28.3	6	Israel	14.5	
2	Taiwan	19.8	7	Denmark	14.2	
3	Belgium	16.7	8	Finland	13.6	
4	Hong Kong	16.1	9	Singapore	13.4	
5	Japan	15.7	10	France	12.1	
	_		32	USA	5.6	
©2004 Raj Jain						

☐ Telecom epicenter has moved from NA+Europe to Asia Pacific

Mobility

- 1.35 Billion Mobile subscribers vs 1.2 Billion Fixed line subscribers at the end of 2003 [ITU]
- □ 70% of internet users in Japan have mobile access
- □ Vehicular mobility up to 250 Km/h (IEEE 802.20)

Wireless Issues


- Security (IEEE 802.11i)
- Higher Data rate (IEEE 802.11n, 100 Mbps, using Multiple-input multiple-output antennae)
- □ Longer distance (WiMAX, >1Mbps to 50 km)
- □ Seamless Networking \Rightarrow Handoff (IEEE 802.21)
- □ Mobility (IEEE 802.20)
- □ Automated RF management (Cell sites)
- □ Large scale networks (RFID, Sensors)

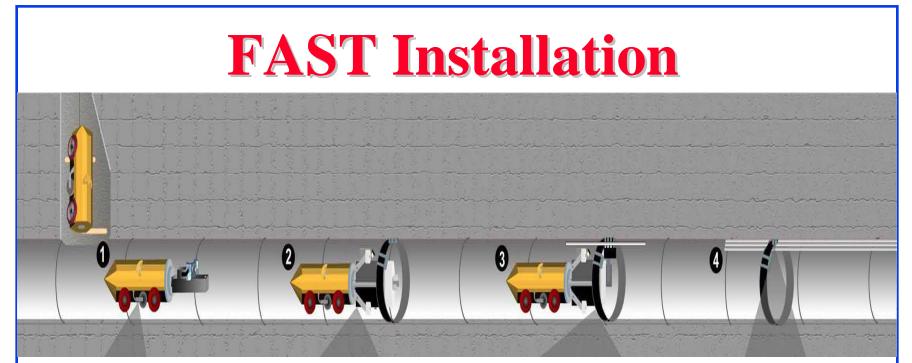
Sensor Networks

- $\square Person-to-person comm \Rightarrow Machine-to-Machine Comm$
- A large number of low-cost, low-power, multifunctional, and small sensor nodes consisting of sensing, data processing, and communicating components

□ Key Issues:

- 1. Scalability
- 2. Power consumption
- 3. Fault tolerance
- 4. Network topology
- 5. Transmission media
- 6. Cost
- 7. Operating environment
- 8. Hardware constraints

Top Networking Research Topics


- 1. Security
- 2. Large scale wireless networks (RFID, Sensors)
- 3. Mobility
- 4. High-Speed wireless
- 5. Network-based computing (Grid computing)
- 6. Optical packet switching

Recent Funding Opportunities

- □ \$40M from NSF on networking research. Two focus areas:
 - □ Programmable wireless networks
 - □ Networking of sensor systems
- □ NIST SBIR:
 - □ S/w Tools For IEEE 1451-Based Smart Sensor Networks
 - □ Secure Ad Hoc Wireless Networks
- **DOE** \$400M
 - □ Massively parallel computing
 - □ Lightweight operating systems for parallel computers
- **DARPA**:
 - □ Internet Control Plane
 - □ All-optical Packet Router \$18M

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)
- □ Ref: <u>http://www.citynettelecom.com</u>, NFOEC 2001, pp. 331

- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers

Fast Restoration: Broken sewer pipes replaced with minimal disruption

- 1. Hype Cycles of Technologies \Rightarrow Recovering from the bottom
- 2. Core market stagnant. Metro and Access more important.
- 3. SONET vs Ethernet in Metro. Need carrier grade Ethernet.
- 4. Low cost is the key to success of a technology
- 5. FTTH is finally happening. EPON will lead.
- 6. Key issues in Wireless are Security and Mobility

Networking Trends: References

- References on Networking Trends, <u>http://www.cis.ohio-state.edu/~jain/refs/ref_trnd.htm</u>
- References on Optical Networking, <u>http://www.cis.ohio-state.edu/~jain/refs/opt_refs.htm</u>
- References on Residential Broadband, <u>http://www.cis.ohio-state.edu/~jain/refs/rbb_refs.htm</u>
- References on Wireless Networking, <u>http://www.cis.ohio-state.edu/~jain/refs/wir_refs.htm</u>