Current Issues in Telecom Networks: QoS, Traffic Engineering and DWDM

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/

These slides are available at

http://www.cis.ohio-state.edu/~jain/talks/spects.htm

The Ohio State University

- □ Recent trends in network traffic and capacity
- □ QoS approaches: ATM, Inteserv, Diffserv, MPLS
- **Traffic engineering**
- **IP** over DWDM: MP λ S

Trend: More Capacity

- Silicon capacity is doubling every 18 months (Moore's Law)
- □ Storage capacity is doubling every 12 months
- □ FDDI in 1993: 100 Mbps to 60 km over single mode
- □ 16 Wavelengths/fiber, 2.5 Gbps/Wavelength
 ⇒ 40 Gbps/fiber (1998)
- □ 1022 Wavelengths/fiber, 40 Gbps/Wavelength
 ⇒ 40,000 Gbps/Fiber
 - = Growth rate of 1000 in five years
- □ Networking capacity is doubling every 6-9 months

- Number of Internet hosts is growing superexponentially.
- □ Traffic per host is increasing: Cable Modems+ADSL
- All projections of network traffic turn out to be lower than actual
- UUNet traffic was doubling every 4 months... 100 days...

The Ohio State University

Trend: Traffic > Capacity						
Expensive Bandwidth	Cheap Bandwidth					
Sharing	No sharing					
Multicast	Unicast					
Virtual Private Networks	Private Networks					
□ More efficient use (L3)	Less efficient use					
Need QoS	QoS less of an issue					
Likely in WANs The Ohio State University	Possible in LANs Raj Jain					

Telco vs Data Networks

Data Protocols Simplicity

Need QoS, ...

Solution 1: ATM

- **1988-1996**
- □ ATM provides:
 - Voice + Data Integration: CBR, VBR, ABR, UBR
 - Signaling
 - Quality of service routing: PNNI
 - Traffic management
- Most carriers including AT&T, MCI, Sprint, UUNET, switched to ATM backbone
- ATM can't reach desktop: Designed by carriers.
 Complexity in the end systems. Design favors voice.

The Ohio State University

Solution 2: Integrated Services

- **1996-1998**
- Controlled Service and Guaranteed Service (VBR and CBR)
- □ Per-Flow guarantee
- Receiver Controlled
- Soft State
- □ End-to-end path based guarantee
- Quantitative and Qualitative
- □ Absolute
- □ Requires signaling (RSVP)

Problems with

Integrated Services + RSVP

- Complexity in routers: packet classification, scheduling
- □ Not scalable with # of flows
- □ Need a concept of "Virtual Paths" or aggregation
- □ Need policy controls
- **Receiver Based:**

Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?

□ Soft State: Need route/path pinning (stability).

□ No negotiation and backtracking The Ohio State University

- 1998-1999
- □ Standardize IPv4 ToS byte's first six bits
- Packets gets marked at network ingress Marking ⇒ treatment (behavior) in rest of the net Six bits ⇒ 64 different per-hop behaviors (PHB)
 No per-Flow guarantees. Only aggregate
 Controlled at the ingress. Access based
 No signaling

Diffserv: Key Issues

- How to ensure resource availability inside the network? How to provision?
- □ QoS is for the aggregate not micro-flows.
 - Large number of low-bandwidth flows are better handled by aggregates.
 - High-bandwidth flows (1 Mbps video) need perflow guarantees.
- ⇒ DiffServ alone is not sufficient for backbone. Signaling via RSVP will be required.

Multiprotocol Label Switching

- MPLS = Allows ATM-like features over switched Ethernet and point-to-point links also.
- □ Virtual Circuit Id \Rightarrow Label on each packet
- □ Ingress router/host puts a label. Exit router strips it off.
- ❑ Switches switch packets based on labels.
 Do not need to look inside ⇒ Fast.
 But, we don't need MPLS for speed!

Traffic Engineering Using MPLS

- □ MPLS allows explicit routes
- Provides isolation, stability, QoS Guarantee
- □ Current IP routing protocols send all traffic over shortest path ⇒ Congestion
- □ MPLS allows parallel paths ⇒ Load balancing
 ⇒ Efficient Utilization of all links
- □ Protection: working and standby paths

QoS Design Approaches

- Massive Bandwidth vs Managed Bandwidth
- Per-Flow vs Aggregate
- Source-Controlled vs Receiver Controlled
- □ Soft State vs Hard State
- Path based vs Access based
- Quantitative vs Qualitative
- □ Absolute vs Relative
- End-to-end vs Per-hop
- □ Static vs Feedback-based
- Homogeneous multicast vs heterogeneous multicast
- □ 1-to-n multicast vs n-to-1 multicast

Comparison of QoS Approaches

Issue	ATM	IntServ	DiffServ	MPLS	IEEE 802.3D		
Massive Bandwidth vs Managed Bandwidth	Managed	Managed	Massive	Managed	Massive		
Per-Flow vs Aggregate	Both	Per-flow	Aggregate	Both	Aggregate		
Source-Controlled vs Receiver Controlled	Unicast Source, Multicast both	Receiver	Ingress	Both	Source		
Soft State vs Hard State	Hard	Soft	None	Hard	Hard		
Path based vs Access based	Path	Path	Access	Path	Access		
Quantitative vs Qualitative	Quantitative	Quantitative +Qualitative	Mostly qualitative	Both	Qualitative		
Absolute vs Relative	Absolute	Absolute	Mostly Relative	Absolute + relative	Relative		
he Ohio State University Rai Jain							

Kaj Jain

Comparison (Cont)

Issue	ATM	IntServ	DiffServ	MPLS	IEEE 802.3D
End-to-end vs Per- hop	end-end	end-end	Per-hop	end-end	Per-hop
Static vs Feedback- based	Both	Static	Static	Static	Static
Homogeneous multicast vs heterogeneous multicast	Homo- geneous	Hetero- geneous	N/A	Homo- geneous	N/A
1-to-n vs n-to-1 multicast	1-to-n	1-to-n	N/A	Both	Both

IP is good for routing, traffic aggregation, resiliency
 ATM for multi-service integration, QoS/signaling
 SONET for traffic grooming, monitoring, protection
 DWDM for capacity

The Ohio State University

Multi-layer Stack: Problems

- □ Functional overlap:
 - Muxing:DWDM λ =ΣSTM=ΣVC=ΣFlows=Σ packets
 - Routing: DWDM, SONET, ATM, IP
 - QoS/Integration: ATM, IP
- □ Failure affects multiple layers: 1 Fiber $\Rightarrow 64 \lambda \Rightarrow 1000 \text{ OC-3} \Rightarrow 10^5 \text{ VCs} \Rightarrow 10^8 \text{ Flows}$
- □ Restoration at multiple layers: $DWDM \Rightarrow SONET \Rightarrow ATM \Rightarrow IP$
- □ SONET \Rightarrow Manual (jumpers) \Rightarrow months/connection
- □ Any layer can bottleneck

 $\Rightarrow Intersection of Features + Union of Problems$

IP over DWDM: Why?

- $\Box IP \Rightarrow Revenue$
 - $DWDM \Rightarrow Cheap bandwidth$
 - IP and DWDM \Rightarrow Winning combination Avoid the cost of SONET/ATM equipment
- □ IP routers at OC-192 (10 Gbps) ⇒ Don't need SONET multiplexing
- □ IP for route calculation, traffic aggregation, protection
- Optical layer for route provisioning, protection, restoration
- □ Coordinated restoration at optical/IP level
- □ Coordinated path determination at optical/IP level

The Ohio State University

<u>ΜΡλS</u>

- $\square \underline{MP\lambdaS} = Multi-Protocol \underline{Lambda} Switching$
- □ All packets with one label are sent on one wavelength
- Optical crossconnects (OXCs) are IP addressable devices and may use OSPF for route calculations

MPλS (Cont)

- □ Next Hop Forwarding Label Entry (NHFLE) \Rightarrow <Input port, λ > to <output port, λ > mapping
- $\square MP\lambda S = Simplified MPLS$
 - No label stacks
 - No per-packet forwarding \Rightarrow No queuing, No scheduling, No Priority, No burstiness, No policing
- □ LDP/CR-LDP and RSVP need extensions for:
 - Resource discovery,
 - Provisioning,
 - Protection/restoration

- DWDM has resulted in an exponential growth in network capacity
- □ Traffic growth is still more than capacity \Rightarrow QoS
- □ High speed routers \Rightarrow IP directly over DWDM
- MPλS to provide resource discovery, provisioning, protection and restoration

References:

- Detailed references in <u>http://www.cis.ohio-state.edu/~jain/refs/ipqs_refs.htm</u> and <u>http://www.cis.ohio-state.edu/~jain/refs/opt_refs.htm</u>
- Recommended books on optical networking, <u>http://www.cis.ohio-state.edu/~jain/refs/opt_book.htm</u>
- IP over Optical: A summary of issues, (internet draft) <u>http://www.cis.ohio-state.edu/~jain/ietf/issues.html</u>
- IP over DWDM, (talk) <u>http://www.cis.ohio-state.edu/~jain/talks/ip_dwdm/index.html</u>

