

Overview

- 1. Is networking still hot or should I change?
- 2. Will the technology I am working on succeed?
- 3. Our initial research: Congestion control
- 4. Lessons Learnt: What is required to make an impact?
- 5. Current developments A Limited personal view

2

Networking = "Plumbing"

- □ Networking is the "plumbing" of computing
- Almost all areas of computing are network-based.
 - > Distributed computing
 - > Big Data

Washington University in St. Louis

- > Cloud Computing
- > Internet of Things
- Smart Cities

ashington University in St

□ Networking is the backbone of computing.

Networking is already great!

omputing.

©2017 R

©2017 Rai Iai

Networking is Fueling All Sectors of Economy

 Networking companies are among the most valued companies: Apple, AT&T, Samsung, Verizon, Microsoft, China Mobile, Alphabet, Comcast, NTT, IBM, Intel, Cisco, Amazon, Facebook, ...

 \Rightarrow All tech companies that are hiring currently are networking companies

 Note: Apple became highly valued only after it switched from computing to communications (iPhone)

©2017 Rai Jair

Networking = Economic Indicator

5

Washington University in St. Louis

sti.edu/~jain/taiks/sigconii

Smart EverythingImage: Sinart WatchImage: Sinart TVImage: Sinart CarImage: Sinart WatchImage: Sinart TVImage: Sinart CarImage: Sinart HealthImage: Sinart HomeImage: Sinart CarImage: Sinart HealthImage: Sinart HomeImage: Sinart KegsImage: Sinart Sinart SinareImage: Sinart IndustriesImage: Sinart CarImage: Sinart Sinart SinareImage: Sinart IndustriesSinart CarImage: Sinart Sinare Sinart SinareImage: Sinart IndustriesSinart CarImage: Sinart Sinare Sinart SinareSinart IndustriesSinart CarImage: Sinart Sinare Sinart SinareSinart IndustriesSinart CarImage: Sinart Sinare Sinart Sinare Sinart SinareSinart CarSinart CarImage: Sinart Sinare Sinart Sinare Sinart Sinare Sinart SinareSinart CarImage: Sinart Sinare Sinart Sinare Sinart Sinare Sinart SinareSinart CarImage: Sinart Sinare Sinart Sinare Sinart Sinart

What's Smart?

□ Old: Smart = Can think \Rightarrow Computation = Can Recall \Rightarrow Storage

- Now: Smart = Can find quickly, Can Delegate
 ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

Not-Smart Smart

@2017 Rai Ia

Washington University in St. Louis

7

Networked \Rightarrow Smart

Am I in the Right Field to Impact?

6

□ YES, Networking is hot!

Washington University in St. Louis

se.wustl.edu/~jain

©2017 Raj Jai

2. Will the technology I am working on succeed or fail?

History is written by the victors - Winston Churchill

9

ngton University in St. Louis

 After

 Image: Constrained of the second of the sec

Given the current state of networking, clean slate is difficult

15

Washington University in St. Louis

http://www.cse.w

©2017 Raj J

Reasons for Impact

□ This was leading edge research

> There were 8 papers on congestion control in 1980

> There are 160 papers in 2016 in IEEE Xplore

- □ The results were based on solid mathematical foundations, validated by simulations
- □ Tech Transfer: We found simple ways to explain our results to our management and to the world \Rightarrow Withstood the test of time, 37 years later

4. What is required to make an impact?

Washington University in St. Louis

23

©2017 Rai Ia

24

Washington University in St. Loui

©2017 Ra

4. Don't Be Let Down by a Failure

- □ Success is filled with failures.
 - > 90% Rejection rate from NSF
 - > 50% Rejection rate from Journals Rejections always result in improving the paper
- Think Positive: Good things may happen after bad ones
 - Think Positive: Good things may happen after bad one
 - $\square A \text{ company refused to extend funding} \Rightarrow Nayna$
 - □ A paper rejected does not mean the idea is bad
 - * Fairness Index was rejected \Rightarrow 3560 citations
 - > Good news may not be good in the long term

30

Washington University in St. Louis

Academics: Challenges

■ Need to get too deep in one area ⇒ Can't move with fast changing world

- □ Time has shrunk. No topics remains hot for 5 years
 - > PhD topics become out of date by the time a student completes the PhD

Entrepreneurs vs. Academics: Issues

Laxmi: Goddess of Wealth

Saraswati: Goddess of Knowledge

Different Belief Systems

Vashington University in St. Louis

e.wustl.edu/~jain/tall

©2017 Raj Jain

©2017 Rai Iai

©2017 Rai Ia

- Multi-Cloud Computing 1.
- IoT/Smart Cities 2.
- Security 3.
- Blockchains 4

Not an exhaustive list. Just personal areas of research.

- Multiple VMs managed by a cloud management system (OpenStack)
- □ Today: Cloud = Computing using virtual resources
 - > μ Cloud = Cloud in a server with multiple VMs managed by OpenStack

ngton University in St. Louis

35

©2017 Rai I

Washington University in St. Louis

Trend: Micro-Services

 All major applications, such as, Facebook, Netflix, etc. consist of a number of micro-services instantiated on demand on virtual machines at multiple locations

Multi-Cloud Hierarchy

 Wide area clouds, local area clouds (home routers with cloud features), Personal area clouds (cars), body area clouds (smart phone)

Trend: Software Defined Multi-Cloud

Orchestrating devices to Orchestrating Clouds

Multi-Cloud Computing

- □ Most applications are/will be distributed over multiple clouds
- □ SDN to manage multi-cloud applications
- □ Healthcare (IoT) use case is an example

Washington University in St. Louis

A 7-Layer Model of IoT

http://www.cse.wustl.edu/~iain/talks/sigcomm.h

©2017 Rai Jair

Areas of Research for IoT/Smart Cities

- 1. PHY: Smart devices, sensors giving real-time information
- 2. Datalink: WiFi, Bluetooth, ZigBee, IEEE 802.15.4, ... Broadband: DSL, FTTH, Wi-Fi, 5G, ...
- 3. Routing: Mesh networking, ...

Washington University in St. Louis

- 4. Analytics: Big-data, data mining, Machine learning, Predictive analytics, ...
- 5. Apps & SW: SDN, SOA, Cloud computing, Web-based collaboration, Social networking, ...
- 6. Applications: Remote health, On-line education, on-line laboratories, ...

46

7. Security: Privacy, Trust, Identity, Anonymity, ...

Attack Surface

- 1. IoT Devices
- 2. IoT wireless access technology: DECT, WiFi, Z-wave, ...
- 3. IoT Gateway: Smart Phone
- 4. Home LAN: WiFi, Ethernet, Powerline, ...
- 5. **IP Network**: DNS, Routers, ...
- 6. Higher-layer Protocols
- 7. Cloud
- 8. Management Platform: Web interface
- 9. Life Cycle Management: Booting, Pairing, Updating, ...

Internet of Harmful Things

Researchers at DEFCON 3, hacked a smart toilet, making it flush incessantly and closing the lid repeatedly and unexpectedly. Causing a **Denial of Service** Attack.

©2017 Rai Jain

 Ref: http://www.computerworld.com/article/2486502/

 security0/worm-may-create-an-internet-of-harmful-things-says-symantec--take-note--amazon-.html

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/sigcomm.htm

IoT and Security

- Security is a key issue in the adoption of IoT or Smart Cities
- □ Hacking is an important part of any security exercise

Blockchains: Centralized to Decentralized

- Trend: Make everything decentralized with no central point of control
- □ Two perfect strangers can exchange money, make a contract without a trusted third party
- Decentralized systems are
 - 1. More reliable: Fault tolerant
 - 2. More secure: Attack tolerant
 - 3. No single bottleneck \Rightarrow Fast
 - 4. No single point of control \Rightarrow No monopoly
- Blockchain is one way to do this among untrusted multi-domain systems.

Time is a cycle: Distributed vs. Centralized debate

Washington University in St. Louis

cse.wustl.edu/~jai

51

@2017 Rai Ia

52

Examples of Centralized Systems

- **Banks**: Allow money transfer between two accounts
- **Currency**: Printed and controlled by the government
- **Stock Exchanges**: Needed to buy and sell stocks
- □ Networks: Certificate Authorities, DNS

□ In all cases:

- 1. There is a central third party to be trusted
- 2. Central party maintains a large database of information \Rightarrow Attracts Hackers
- 3. Central party may be hacked \Rightarrow affects millions
- 4. Central party is a single point of failure. Can malfunction or be bribed.

 Ref: A. Narayanan, et al, "Bitcoin and Cryptocurrency Technologies," Princeton University Press, 2016, 304 pp.

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/sigcomm.htm

 ©2017 Raj Jair

53

Networking Applications of Blockchains

- □ Multi-Domain Systems:
 - > Multiple Cloud Service Providers
 - > Multiple cellular providers
 - > Multi-Interface devices: WiFi, Cell, Bluetooth, ...
 - > BGP: BGP Authentication
- Globally Centralized Systems:
 - > DNS
 - > Certificate Authorities

Explore blockchains for multi-domain/centralized systems

54

Networking Applications (Cont)

Public Key Infrastructure

> Certificate Authorities issue certificates

- Single Point of Failure
- Diginotar Dutch certificate authority was compromised in 2011)
- □ **NameCoin**: A decentralized key-value registration and transfer platform using blockchains.
 - > A decentralized **Domain Names Registry**
 - >.bit domain names
- DARPA issued a RFP for Secure Decentralized Messaging using Blockchains

Blockchains for Multi-Domain Large Scale Systems

@2017 Rai Ia

Washington University in St. Louis

ngton University in St. Louis

Summary

- 1. Our goal is to make an impact. Networking was a hot field when we started and still is.
- 2. The technology that you design should have the right transition strategy, lower cost or killer application
- 3. Tech Transfer: Make sure your results are based on solid mathematical foundations, validated by simulations and still can be explained simply.
- 4. You are a company: Select right topics and complete. Complete = Adoption/Implementation

incp.

Thanks to Those Who Changed My Life Shri Shanti Lal Jain Smt. Sulochana Devi Jain Aunt Prof. N. L. Jain Father Mother GEC, Rewa Prof M R Chidambara Prof. Raman Mehra, Prof. Ugo Gagliardi, Dr. Terry Potter. Harvard Harvard DEC LLSc. Prof. Jerome Saltzer Prof. Fernando Corbato Prof. Jon Turner Mv M.I.T. M.I.T. Wash U Family Washington University in St. Louis ©2017 Rai Jair 58

Thanks To Colleagues, Mentors, Supporters, Students, ... Amitabh Mishra Shyam Parekh Jay Iyer Anurag Kumar Sonia Fahmi Jon Crowcroft

- Arjan Durresi
- Carey Williamson
- Dah Ming Chiu
- Dan Grossman
- Darlene Fisher
- Dave Oran
- Dave Ward
- David Corman
- David Lucantoni
- □ Fred Templin
- George Varghese
- □ H. Anthony Chan
- □ Imrich Chlamtac

- - K. K. Ramakrishnan
 - Lyman Chapin
 - Mahbub Hassan

 - Mostafa Ammar
 - - Radia Perlman
 - Raj Yavatkar
 - □ Rick Bunt
 - Sastri Kota
 - Shivkumar Kalyanaraman

Washington University in St. Louis

- Mod Marathe Mohammed Samaka
- **R**. Srikant

- ©2017 Raj Jair

Subharthi Paul

Sudipta Sengupta

□ And many more...

Suman Banerjee

Victor Bahl

□ Vint Cerf

Scan This to Download These Slides

Raj Jain Jain@wustl.edu rajjain.com/talks

Washington University in St. Louis

60

©2017 Raj Jair