# **Application Delivery Using Software Defined Networking**





Project Leader: Subharthi Paul Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

GITPro World 2013, Palo Alto, CA, April 13, 2013

These slides and audio/video recordings are available at: <u>http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm



- 1. Cloud Computing  $\Rightarrow$  Network Virtualization  $\Rightarrow$  SDN
- 2. SDN defined by Five Innovations
- 3. Open Application Delivery Using SDN

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm

## Virtualization of Life

#### $\Box \text{ Internet} \Rightarrow \text{Virtualization}$



- □ No need to get out for
  - > Office
  - Shopping
  - Entertainment
  - Education



- Virtual Workplace
- □ Virtual Shopping
- Virtual Education
- Virtual Sex
- Virtual Computing

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm

# **Virtualization of Computing**

- ❑ August 25, 2006: Amazon announced EC2 ⇒ Birth of Cloud Computing in reality (Prior theoretical concepts of computing as a utility)
- Web Services To Drive Future Growth For Amazon (\$2B in 2012, \$7B in 2019)
   Forbes, Aug 12, 2012
- □ **Networking**: Plumbing of computing
  - Virtual Channels, Virtual LANs, Virtual Private Networks







#### **Networks need to support efficient cloud computing**

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm





- Control Plane = Making forwarding tables
- Data Plane = Using forwarding tables
- Once vs. Billion times per second, Complex vs. fast
- One expensive controller with lots of cheap switches

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm

## 2. Flow-based control

- Data/disk/Memory sizes are going up by Moore's Law
- Packet size has remained 1518 bytes since 1980
- □ Multimedia, big data  $\Rightarrow$  Packet Trains  $\square \square \square \square \square$
- □ Flow is defined by L2-L4 headers
- $\Box \quad \text{Decide once, use many times} \Rightarrow \text{Execution performance}$





#### **Centralized** vs. **Distributed**

- Consistency
- □ Fast Response to changes
- Easy management of lots of devices

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm





### **SDN Impact**

- □ Why so much industry interest?
  - Commodity hardware
    - $\Rightarrow$  Lots of cheap forwarding engines  $\Rightarrow$  Low cost
  - > Programmability  $\Rightarrow$  Customization
  - > Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly
- □ Tsunami of software defined devices:
  - Software defined wireless base stations
  - Software defined optical switches
  - Software defined routers



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm









#### **Application Delivery in a Data Center**

- **Replication**: Performance and Fault Tolerance
  - $\checkmark$  If Load on S1 >0.5, send to S2
  - ✓ If link to US broken, send to UK
- **Content-Based Partitioning:** 
  - > Video messages to Server S1
  - Accounting to Server S2

#### **Context Based Partitioning:**

- > Application Context: Different API calls
  - Reads to S1, Writes to S2
- > User Context:
  - ✓ If Windows Phone user, send to S1
  - $\checkmark$  If laptop user, send to HD, send to S2

□ **Multi-Segment**: User-ISP Proxy-Load Balancer-Firewall-Server

17

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm





### **Our Solution: OpenADN**

- Open Application Delivery Networking Platform Platform = OpenADN aware clients, servers, switches, and middle-boxes
- □ Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing⇒ Global datacenter





# **Key Features of OpenADN**

- Edge devices only.
  Core network can be current TCP/IP based,
  OpenFlow or future SDN based
- Coexistence (Backward compatibility): Old on New. New on Old
- 3. Incremental Deployment
- 4. Economic Incentive for first adopters
- 5. Resource owners (ISPs) keep complete control over their resources



#### Most versions of Ethernet followed these principles. Many versions of IP did not.

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm



### **Summary**

 Cloud computing ⇒ Virtualization of computing, storage, and networking

 $\Rightarrow$  Numerous recent standards related to networking virtualization both in IEEE and IETF

- 2. Recent Networking Architecture Trends:
  - 1. Centralization of Control plane
  - 2. Standardization of networking abstractions  $\Rightarrow$  Software Defined Networking (SDN)
  - 3. Most networking devices will be software defined
- 3. OpenADN enables delivery of applications using North-bound SDN API

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn\_gw.htm