Software Defined Networking at the Tactical Edge

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

Talk at Bharat Electronics Limited, Bangaluru, Sept 10, 2016 These slides are available on-line at:

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm

©2016 Raj Jain

- 1. What is SDN and What it is not?
- 2. Recent Trends in Networking
- 3. Software Defined Inter-Cloud
- 4. Inter-Cloud Applications

Washington University in St. Louis

Three Features that Define SDN

- 1. Abstract the Hardware: No dependence on physical infrastructure. Software API.
- 2. **Programmable**: Shift away from static manual operation to fully configurable and dynamic
- **3.** Centralized Control of Policies: Policy delegation and management

©2016 Raj Jain

Software Defined Anything (SDx)

- Tsunami of software defined things
 - Software Defined Networking (SDN)
 - Software Defined Datacenter (SDDC)
 - Software Defined Storage (SDS)
 - Software Defined Compute (SDC)
 - Software Defined Infrastructure (SDI)

Washington University in St. Louis

©2016 Raj Jain

Ten Benefits of SDN

- **1. Programmability**: Can change behavior on the fly.
- 2. Automation
- **3. Orchestration**: Manage thousands of devices
- 4. Visibility: Centralized monitoring of state
- 5. **Performance**: Optimize network device utilization
- **6. Virtualization**: Use resources without worrying about location, size, etc.
- 7. **Dynamic Scaling**: Can change size, quantity
- 8. Multi-tenancy
- 9. Service Integration
- 10. Openness: Full choice of Modular plug-ins

- Fast Response to changes
- Fast Consistency
- Less overhead \Rightarrow Scalable
- Single Point of Failure
- Washington University in St. Louis

- Time to converge
- Slow consistency
- Not scalable
- Fault Tolerant

http://www.cse.wustl.edu/~jain/talks/sdn bel.htm

Four Confusions About SDN

1. Policies vs. Control:

Control = All bits and messages not sent by the user In IP control includes all headers and all routing messages.

- 2. Separation of Control Plane: Elements have only data plane and have no brains
- **3. SDN vs. OpenFlow**: OpenFlow is the father of SDN but not SDN.
- Need OpenFlow: OpenFlow is micro-management. It is not scalable. For large infrastructure, need scalable solutions.

Separation vs. Centralization

Separation of Control Plane

Centralization of Policies

Micromanagement is not scalable

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm

©2016 Raj Jain

Current SDN Debate: What vs. How?

- SDN is easy if control is centralized but not necessary.
 Distributed/hierarchical solutions may be required for fail-safe operation.
- 2. Complete removal of control plane may be harmful. Exact division of control plane between centralized controller and distributed forwarders is yet to be worked out

Current SDN Debate (Cont)

- 3. SDN is easy with a standard southbound protocol like OpenFlow but one protocol may not work/scale in all cases
 - 1. Diversity of protocols is a fact of life.
 - 2. There are no standard operating systems, processors, routers, or Ethernet switches.
- If industry finds an easier way to solve the same problems by another method, that method may win. E.g., ATM vs. MPLS.

SDN Evolution

- □ SDN was invented in 2009
- □ Then: SDN:
 - Separation of control and data planes
 - Centralization of Control
 - Standard Protocol between the planes
- Now: Software Defined Everything (SDE)
 = Disaggregation of hw/sw
 - > Commodity hardware
 - Software that runs on commodity hw
 - > Open Source Software
 ⇒ Service industry
 - Controller replaced by Orchestrator
 - Centralization of policies

Washington University in St. Louis

©2016 Raj Jain

Flavors of SDN

- 1. **OpenDaylight**: Multi-Protocol Southbound
- 2. Bare Metal Switches + Network Operating System
 - a. Switches from Dell, Edgecore, HP, Penguin, QCT, Agema, Supermicro
 - b. Open Network Install Environment (ONIE)
 - c. Network operating system: Alcatel-Lucent, Arista, Big Switch, Broadcom, Brocade, Cisco, Cumulus, Dell, Ericsson, Extreme, HP, Juniper, OCP, Pica8, Pluribus
- 3. Network Virtualization/Overlay: VMWare's NSX
- 4. **ONF SDN**: OpenFlow southbound

All provide: Abstraction, Programmability, and Centralization

Ref: <u>http://cumulusnetworks.com/support/linux-hardware-compatibility-list/</u>, <u>http://onie.org/</u>

Source: Alan J Weissberger Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm_

©2016 Raj Jain

Trend: Micro-Cloud Computing

- Cloud computing was invented in 2006
- Then: Cloud = Large Data Center Multiple VMs managed by a cloud management system (OpenStack)
- Today: Cloud = Computing using virtual resources
 - µCloud = Cloud in a server with multiple VMs.
 - ➤ Each VM with Multiple Containers ⇒ Multiple Services

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm

©2016 Rai Jain

Trend: Computation in the Edge

□ To service mobile users, the computation needs to come to edge ⇒ Mobile Edge Computing (MEC)

Trend: Multi-Cloud Hierarchy

■ Wide area clouds, local area clouds (home routers with cloud features), Personal area clouds (cars), body area clouds (smart phone) ⇒ Fog Computing

NFV Multi-Cloud Use Case

□ Virtual Machine/Cloud implementation of carrier functions
 ⇒ Virtual appliances

 \Rightarrow All advantages of virtualization (quick provisioning, scalability, mobility, Reduced CapEx, Reduced OpEx, ...)

Service Chaining: Where to place the virtual functions?

Any Function Virtualization (FV)

- "Network" function virtualization of interest to Network service providers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, ...
- Everyone can benefit from:
 - Functional decomposition of there industry
 - Virtualization of those functions
 - Service chaining those virtual functions (VFs) or Apps

Networking App Market: Lower CapEx

Virtual IP Multimedia System

Available on the AppStore

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm

©2016 Raj Jain

Tactical Application

Computation in the edge

Multiple Applications and Providers

- Each mission has its own Global controller (GC) and local controllers (LC)
- Every one has its own policies and set of providers

Challenges in Multi-Cloud Deployment

- Dynamic: Forwarding changes with state of the servers, links
- Heterogeneous: Different cloud providers, different services, different policies
- **Distributed Control**:
 - > Equipment belongs to infrastructure provider
 - > Data belongs to Tenants

Massive Scale: Millions of enterprise applications sharing networks provided by many ISPs using cloud services from many CSPs

Washington University in St. Louis

Challenges in Service Placement

- **Delay constraints**
- □ WAN links bottleneck: Need to model link queues
- $\Box \quad Complexity: NP-complete \Rightarrow Need efficient heuristics$
- □ Affinity: VNF1 and VNF2 should be co-located
 - Significant communication exchanges
 - > Duplicate memory pages in VMs (same OS and Libraries)
- □ Anti-Affinity: VNF1 and VNF2 should not be placed on the same physical server.
 - > CPU-intensive applications
 - > VMs belonging to different users in a cloud may cause security risk such as cross-VM attacks
 - > Duplicate VMs used to improve fault tolerance and availability

Washington University in St. Louis

Multi-Cloud Security

Can one cloud provider be trusted by another? Would Google trust Microsoft, Amazon, or Apple?

Summary

- 1. SDN is about abstracting the hardware, providing programmability, and centralizing policy control
- Clouds getting smaller, Carriers and enterprises moving to clouds, Internet of things are leading to clouds everywhere ⇒ multi-cloud applications.
- 3. Our multi-cloud application management system (MCAD) allows policy-based deployment and management of multi-cloud application. Handles heterogeneous clouds and respects resource ownerships
- 4. Multi-Cloud has important tactical applications
- 5. Service function placement problem is NP complete. Challenges included delay constraints, WAN Link bottlenecks, and affinity

Washington University in St. Louis

Recent Papers

- Subharthi Paul, Raj Jain, Mohammed Samaka, Jianli Pan, "Application Delivery in Multi-Cloud Environments using Software Defined Networking," Computer Networks Special Issue on cloud networking and communications, Available online 22 Feb 2014, <u>http://www.cse.wustl.edu/~jain/papers/comnet14.htm</u>
- Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Managing, Nov 2013, pp. 24-31, <u>http://www.cse.wustl.edu/~jain/papers/net_virt.htm</u>
- Subharthi Paul, Raj Jain, Mohammed Samaka, Aiman Erbad, "Service Chaining for NFV and Delivery of other Applications in a Global Multi-Cloud Environment," ADCOM 2015, Chennai, India, September 19, 2015, <u>http://www.cse.wustl.edu/~jain/papers/adn_in15.htm</u>
- Raj Jain, Mohammed Samaka, "Application Deployment in Future Global Multi-Cloud Environment," The 16th Annual Global Information Technology Management Association (GITMA) World Conference, Saint Louis, MO, June 23, 2015, <u>http://www.cse.wustl.edu/~jain/papers/apf_gitp.htm</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm

©2016 Raj Jain

Recent Papers (Cont)

Deval Bhamare, Raj Jain, Mohammed Samaka, Gabor Vaszkun, Aiman Erbad, "Multi-Cloud Distribution of Virtual Functions and Dynamic Service Deployment: OpenADN Perspective," Proceedings of 2nd IEEE International Workshop on Software Defined Systems (SDS 2015), Tempe, AZ, March 9-13, 2015, 6 pp.

http://www.cse.wustl.edu/~jain/papers/vm_dist.htm

Acronyms

- ATMAsynchronous Transfer Mode
- **ECN** Explicit congestion notification
- **EFCI** Explicit Forward Congestion Indication
- **FECN** Forward Explicit Congestion Notification
- GB Gigabyte
- □ IEEE Institution of Electrical and Electronic Engineering
- □ IETF Internet Engineering Task Force
- □ IoT Internet of Things
- □ IP Internet Protocol
- □ IRTF Internet Research Task Force
- **ITU** International Telecommunications Union
- LAN Local Area Network
- □ LTE Long Term Evolution
- □ MHz Mega Hertz
- OpenADN Open Application Delivery Networking
- **SDN** Software Defined Networking

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/sdn_bel.htm_

©2016 Raj Jain

Acronyms (Cont)

- **TCP** Transmission Control Protocol
- **TV** Television
- □ VM Virtual Machine
- □ WAN Wide Area Network
- WiFi Wireless Fidelity
- WiMAX Worldwide Interoperability for Microwave Access

Scan This to Download These Slides

Raj Jain

http://bit.ly/sdn_bel

©2016 Raj Jain