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❑ Goals

❑ Metrics
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❑ Scheduling Methods
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Scheduling: GoalsScheduling: Goals
❑ Sharing bandwidth

❑ Sharing bandwidth fairly

❑ Meeting bandwidth guarantees (min and max)
⇒ Provide isolation between users

❑ Meeting loss guarantees (multiple levels)

❑ Meeting delay guarantees (multiple levels)

❑ Reducing delay variation
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Goals (Goals (ContCont))
❑ Guarantees require call admission control,

 policing, shaping, drop policies,
buffer allocation, and scheduling

❑ These issues are, therefore, related.

❑ For example, zero-loss can be obtained by
allocating PCR (but no multiplexing gain).
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Scheduling: MethodsScheduling: Methods
❑ FCFS

❑ Round Robin

❑ Priority Queueing

❑ Priority Queueing with Windows

❑ Generalized Processor Sharing (GPS)

❑ VirtualClock

❑ Weighted Fair Queueing (WFQ), WF2Q, WF2Q+

❑ Self-Clocked Fair Queueing (SCFQ)

❑ Stop and Go

❑ Rate Controlled Service Descipline (RCSD)
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Scheduling MetricsScheduling Metrics
❑ Complexity of enqueue+dequeue processes

❑ Fairness: If two flows are backlogged, difference
between their weighted throughputs is bounded

❑ Complexity of adding and releasing connections (or
changing quotas in ABR)

❑ Delay bounds should not depend upon behavior of
other flows, number of other flows, reservations of
other flows
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Scheduling ClassificationScheduling Classification
❑ Work conserving vs nonconserving

❑ Sorted priority vs frame based

❑ Control vs accomodate distortion
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Work Conserving Work Conserving vsvs
NonconservingNonconserving

❑ Conserving: Server not idle if there is work.

❑ Produces lower average delay, higher delay var.

❑ Produces high total throughput

❑ Examples: GPS, WFQ,  VirtualClock

❑ Nonconserving: Better for multiple hops

❑ May produce lower worst case end-to-end delay

❑ May produce higher network throughput

❑ Reshaping at every hop ⇒  additive hop delays

❑ Examples: Stop & Go
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Sorted PrioritySorted Priority vs vs
Frame BasedFrame Based

❑ Sorted Priority: Virtual time for each flow/packet

❑ Generally has a O(log(V)) complexity

❑ Examples: VirtualClock, WFQ

❑ Frame Based: Time split into fixed/variable frames

❑ Each flow reserves the time per frame

❑ Delay and bandwidth allocations are dependent

❑ Examples: Stop and Go uses constant frame size.
DRR, WRR allow variable frame size

Frame
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Control DistortionControl Distortion vs vs
AccomodateAccomodate distortion distortion

❑ Burstiness of the traffic increases along the path ⇒
Need more resources

❑ Control Distortion: Reshape at each hop ⇒ Non-
work conserving

❑ Example: Stop and Go, HRR, Jitter EDD

❑ Accomodate Distortion: Do not reshape

❑ Example: VirtualClock, Fair Queueing, GPS,
Delay EDD
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FCFSFCFS
❑ Unfair

❑ No isolation among users
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Round RobinRound Robin

❑ Parking lot problem: Distance sources get lower

❑ Classify incoming traffic into flows (Src-Dest pairs)

❑ Round-robin among flows

❑ Known Problems:
Ignores packet length ⇒ Fair Queueing

❑ Ref: Nagle

S1 S1 S1
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PriorityPriority Queueing Queueing
❑ Also known as head of line (HOL)

❑ Priority 0 through n-1

❑ Priority 0 is always serviced first.

❑ Priority i is serviced only if 0 through i-1 are empty

❑ Highest priority has the lowest delay, highest
throughput, lowest loss

❑ Lower priority classes may be starved if higher
priority are overloaded
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PriorityPriority Queueing Queueing
with Windowswith Windows

❑ Maximum ni packets from ith priority
during a single round

❑ Come back to higher priority unless ni packets have
been served

❑ Guarantees non-starvation but increases the delay for
higher priorities

❑ Large ni ⇒ Priority queueing.
Small ni ⇒ Round robin
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Priority with WindowsPriority with Windows
((ContCont))

❑ ni's determine min bandwidth allocations
and delays

❑ Quantitative relationships between ni and delays or
loss not provided.

❑ VLSI design implemented

❑ Refs: El-Gebaly et al and Sabaa et al.
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VirtualClockVirtualClock
❑ Goals: Provide average reserved

throughput Ri b/s

❑ Provides isolation between users

❑ Upon packet arrival:

❑ VirtualClocki=Max{wall clock time,
VirtualClocki}

❑ Timestamp the packet with VirtualClocki

❑ VirtualClocki = VirtualClocki + packet size/Ri

❑ Transmit packets in order of increasing timestamps
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VirtualClockVirtualClock ( (ContCont))
❑ Possible to implement with one timestamp

per flow rather than one per packet

❑ Known Problems: Flows do not accumulate credits

❑ Flows using idle bandwidth are penalized later
⇒ Virtual Clock is Unfair ⇒ Several proposed
fixes, e.g., Time-shift scheduling

❑ No CAC policy ⇒ no delay bounds

❑ Need to implement priority queues
⇒ O(log V) complexity, V=# of VCs

❑ Refs: Zhang, Srinivasan et al, Stilidias and Varma,
Cobb et al
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Generalized ProcessorGeneralized Processor
SharingSharing

❑ Idealized policy to split bandwidth

❑ Each user has a fraction si of the bandwidth

❑ All unused bandwidth is allocated in proportion to
the fraction φi

❑ At time t, ith active user gets a fraction ri

ri = φi /Σactive j φj

❑ Weighted round-robin with infinitely small service
quantum
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GPS Example: ArrivalsGPS Example: Arrivals
❑ Eleven Sources. First source gets 0.5.

Other 10 sources get 0.05 each. First
source sends 10 cells. 2-11 send one each at t=0.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20
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GPS Example: ServiceGPS Example: Service
❑ Each cell of the first source takes 2 units

of time. Sources 2-11 take 20 units each.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20
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Weighted Fair QueueingWeighted Fair Queueing
❑ Approximates bit-by-bit round robin.

Compute GPS finish time and schedule
the packet with the smallest finish time.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20
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Weighted FairWeighted Fair Queueing Queueing
(WFQ)(WFQ)

❑ Basis of IETF's integrated services

❑ Naive implementation requires O(log(m)),
 m=# of packets

❑ Keshav's implementation requires O(log(V)),
 V=# of flows

❑ Known Properties: CAC and End-to-end delay
bounds have been derived for leaky-bucket shaped
sources

❑ Parekh and Gallagher showed that leaky bucket
+FQ ⇒ delay guarantees
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WFQ (WFQ (ContCont))
❑ Known Problems:

❑ Need large bandwidth reservation to
get small delay bound.

❑ Complex to implement.

❑ Packets can be serviced much earlier than GPS.
Can introduce significant unfairness over GPS.

❑ Refs: Demers et al, Keshav, Srinivasan et al
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GPS Example 2: ArrivalsGPS Example 2: Arrivals
❑ Eleven Sources. First source gets 0.5.

Other 10 sources get 0.05 each. First
source sends 11 cells. 2-11 send one each at t=0.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20

p11
1
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GPS Example 2: ServiceGPS Example 2: Service
❑ Each cell of the first source takes 2 units

of time. Sources 2-11 take 20 units each.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20

p11
1
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WFQ: ServiceWFQ: Service
❑ Packets finish at the same time or earlier

than GPS. Some packets finish much earlier.
Long period of no service ⇒ Unfair.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20

p11
1
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Worst Case Fair WeightedWorst Case Fair Weighted
Fair Queuing (WF2Q )Fair Queuing (WF2Q )

❑ WF2Q fixes the unfairness problem in WFQ.

❑ WFQ: Among packets waiting in the system,
pick one that will finish service first under GPS.

❑ WF2Q: Among packets waiting in the system
that have started service under GPS, select one
that will finish first under GPS.

❑ WF2Q provides service close to GPS (difference in
packet service time bounded by max. packet size).

❑ WF2Q+ is an simpler implementation of WF2Q

❑ Refs: Jon Bennett, Hui Zhang.
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WF2Q: ServiceWF2Q: Service

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Time0 10 20

p11
1
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Self-Clocked FairSelf-Clocked Fair
Queueing (SCFQ)Queueing (SCFQ)

❑ Computational complexity of computing
virtual finishing time in WFQ depends
upon the number of times flows change from idle to
busy and vice versa.  SCFQ reduces it to O(1).
Dequeue and enqueue is still O(log(V))

❑ Uses system clock instead of wall clock (as in
Virtual Clock)

❑ A packet's tag = Length/rate + Max{tag of previous
packet in that flow, tag of packet in service at the
time of arrival}

❑ Ref: Golestani
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Stop and GoStop and Go

❑ Time is divided into constant size frames

❑ An arriving packet leaves on the next departing frame

❑ Server cannot idle if there are eligible packets

❑ Known Properties: Shaping maintained throughout
⇒ Delay bound possible  ⇒  Tight delay jitter

❑ Non-Work conserving. Link idle if no packets for
current frame but there are the next frame

❑ Known Problems: Allocation = PCR ⇒ Inefficient

L1

L2

L3 L1
L3
L2
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Rate ControlledRate Controlled
Service DisciplinesService Disciplines

❑ Rate-Controller (shaper) + Packet Scheduler
Decouples bandwidth allocation and delay bounds

Regulator 1

Regulator 2

Regulator h

Priority 1

Priority n

Non-real-time
Non-real-time Input

Real-time
Input

Rate Controller Scheduler
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RCSD (RCSD (ContCont))
❑ Rate Controller:

❑ Each packet is assigned an eligibility
time on arrival

❑ Packet is held in rate controller and released to
scheduler at its eligibility time

❑ Many different schedulers and rate controllers can
be combined to produce different algorithms.

Rate-Jitter

Delay-Jitter

Earliest due date
Static priority
FCFS

×
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CBR
rt-VBR

nrt-VBR ABR UBR

Multi-class SchedulingMulti-class Scheduling
For ATMFor ATM

❑ Each class has an allocation = Guaranteed under
overload

❑ Some classes need minimum delay ⇒ have priority.

❑ Some classes are greedy: They will send more than
allocated and will want to use all left-over. No left-
over capacity.

❑ Left-over capacity must be fairly allocated.
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Scheduling Methods:Scheduling Methods:
ComparisonComparison

Algorithm Unfairness Complexity
Round Robin ∞ O(1)
Fair Queueing Max O(log(V))
SCFQ 2Max O(log(V))
DRR 3 Max O(1)
Virtual Clock ∞ O(log(V))
WRR Max O(1)
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SummarySummary

❑ Schedulers can provide bandwidth, delay, loss
guarantees

❑ Large # of VCs ⇒ Need O(1) complexity

❑ Frequent rate changes ⇒ Allocation to a VC should
depend upon that VC’s demands and not on others

❑ Non-work conserving schedulers provide end-to-
end delay guarantees.
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ReferencesReferences
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~jain/refs/ref_schd.htm
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Thank You!Thank You!


