QoS over Data Networks Raj Jain, Jennifer Hou, Jason Han Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/

Integrated Services

- Best Effort Service: Like UBR.
- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w MCR
- Guaranteed Service: rt-VBR
 - □ Firm bound on data throughput and <u>delay</u>.
 - Delay jitter or average delay not guaranteed or minimized.
 - Every element along the path must provide delay bound.
 - Is not always implementable, e.g., Shared Ethernet.
 - □ Like CBR or rt-VBR

Problems with RSVP and Integrated Services

- Complexity in routers: packet classification, scheduling
- Scalable in number of receivers per flow but
 - Per-Flow State: $O(n) \Rightarrow$ Not scalable with # of flows.
 - Number of flows in the backbone may be large.
 - \Rightarrow Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations?

Support for accounting and security.

 \Rightarrow RSVP admission policy (rap) working group.

Problems (Cont)

- Receiver Based: Need sender control/notifications in some cases.
 Which receiver pays for shared part of the tree?
- Soft State: Need route/path pinning (stability).
 - Limit number of changes during a session.
- RSVP does not have negotiation and backtracking
- □ Throughput and delay guarantees require support of lower layers. Shared Ethernet ⇒ IP can't do GS or CLS. Need switched full-duplex LANs.
- □ Can't easily do RSVP on ATM either
- Most of these arguments also apply to integrated services.

Differentiated Services

Ver	Hdr Len	Precedence	ToS	Unused	Tot Len
4b	4b	3b	4b	1b	16b

□ IPv4: 3-bit precedence + 4-bit ToS

- Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- DS working group formed February 1998
- □ Charter: Define ds byte (IPv4 ToS field)
- Per-Hop Behavior: Externally
 Observable Forwarding Behavior, e.g.,
 x% of link bandwidth, or priority

In
$$\rightarrow$$
 PHB \rightarrow Out

Expedited Forwarding

- Also known as "Premium Service"
- Virtual leased line
- Similar to CBR
- Guaranteed minimum service rate
- Policed: Arrival rate < Minimum Service Rate
- Not affected by other data PHBs
 ⇒ Highest data priority (if priority queueing)

- □ PHB <u>Group</u>
- Four Classes: Decreasing weights in WFR/WFQ
- Three drop preference per class (one rate and two bucket sizes)

DiffServ: Issues

- □ per-hop ⇒ Need at every hop One non-DiffServ hop can spoil all QoS
- End-to-end ≠ Σ per-Hop Designing end-to-end services with weighted guarantees at individual hops is difficult. Only EF will work.
- QoS is for the aggregate not microflows. Not intended/useful for end users. Only ISPs.
 - Large number of short flows are better handled by aggregates.

DiffServ Issues (Cont)

- Long flows (voice and video sessions) need per-flow guarantees.
- High-bandwidth flows (1 Mbps video) need per-flow guarantees.
- All IETF approaches are open loop control ⇒ Drop.
 - Closed loop control \Rightarrow Wait at source Data prefers waiting \Rightarrow Feedback
- Guarantees ⇒ Stability of paths
 ⇒ Connections (hard or soft)
 Need route pinning or connections.

- Entry "label switch router (LSR)" attaches a label to the packet based on the route
- Other LSRs switch packets based on labels. Do not need to look inside
- ❑ Labels have local significance
 ⇒ Different label at each hop (similar to VC #)
- Exit LSR strips off the label

Traffic Engineering Using MPLS

- **Traffic Engineering**
 - = Performance Optimization
 - = Efficient resource allocation,
 - Path splitting

 \Rightarrow Maximum throughput, Min delay, min loss

 \Rightarrow Quality of service

In MPLS networks:
 "Traffic Trunks" = SVCs
 Traffic trunks are routable entities like
 VCs

- Multiple trunks can be used in parallel to the same egress.
- Each traffic trunk can have a set of associated characteristics, e.g., priority, preemption, policing, overbooking

- Multiple drop preferences does not help data (TCP) or Voice/Video
- Voice/video need multiple leaky bucket rates for layered/scalable coding.
- Need additivity or mathematical aggregatability.
 CBR (EF) should be the first step for IP.
- Excess allocation is useful with closed loop. Network/application dynamics
 Need closed loop