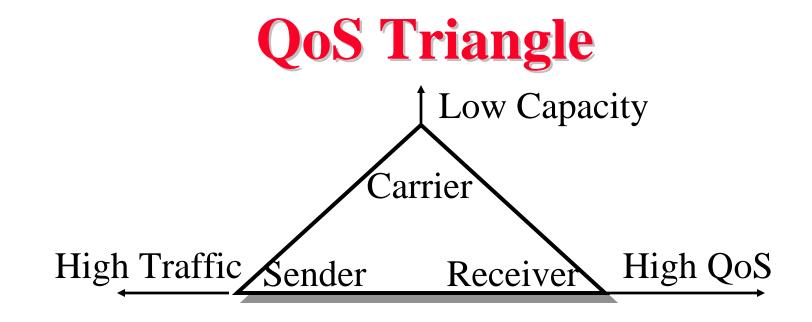
# Quality of Service In Data Networks: Problems, Solutions, and Issues

Raj Jain
The Ohio State University

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu


http://www.cse.wustl.edu/~jain/

state.edu/~jain/talks/qos9906.htm

The Ohio State University

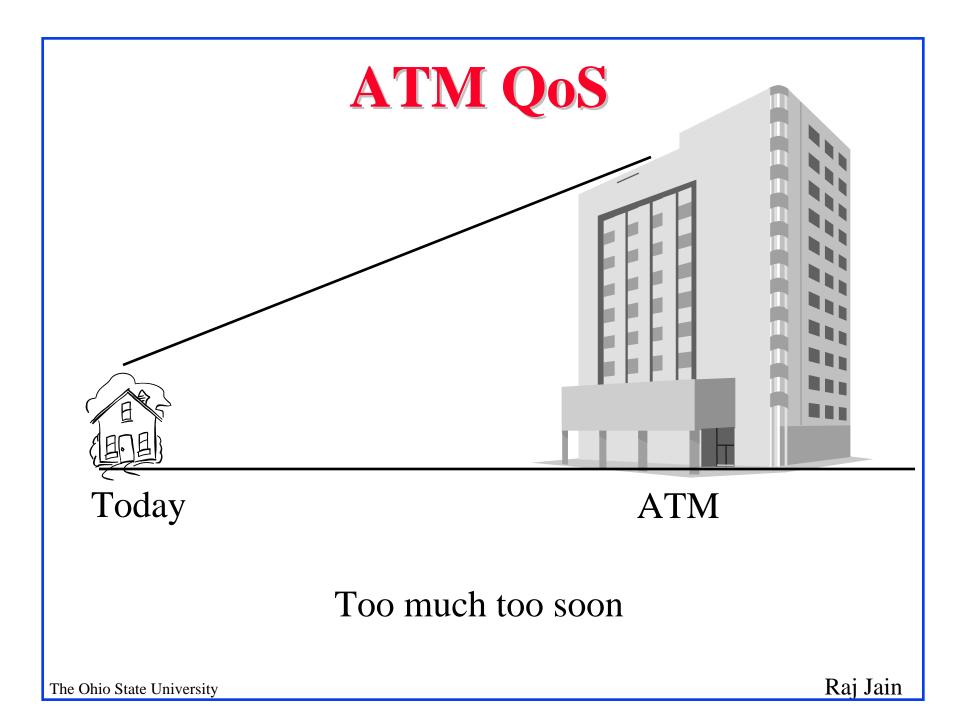


- ATM QoS and Issues
- Integrated services/RSVP and Issues
- Differentiated Services and Issues
- QoS using MPLS
- End-to-end QoS
- □ This is an update to the May'98 talk <a href="http://www.cis.ohio-state.edu/~jain/talks/ipqos.htm">http://www.cis.ohio-state.edu/~jain/talks/ipqos.htm</a>



- Senders want to send traffic any time with high load, high burstiness
- □ Receivers expect low delay and high throughput
- □ Since links are expensive, providers want to minimize the infrastructure
- $\square$  If one of the three gives in  $\Rightarrow$  no problem

#### What is QoS?


- Predictable Quality: Throughput, Delay, Loss, Delay jitter, Error rate
- Opposite of best effort = Random quality
- Mechanisms:
  - Capacity Planning
  - Classification, Queueing, Scheduling, buffer management
  - QoS based path determination, Route pinning
  - Shaping, policing, admission control
  - Signaling

# **ATM Service Categories**

- □ CBR: Throughput, delay, delay variation
- □ rt-VBR: Throughput, delay, delay variation
- □ **nrt-VBR**: Throughput
- □ **UBR**: No Guarantees
- □ **GFR**: Minimum Throughput
- □ **ABR**: Minimum Throughput. Very low loss. Feedback.
- □ ATM also has QoS-based routing (PNNI)

The Ohio State University Raj Jain

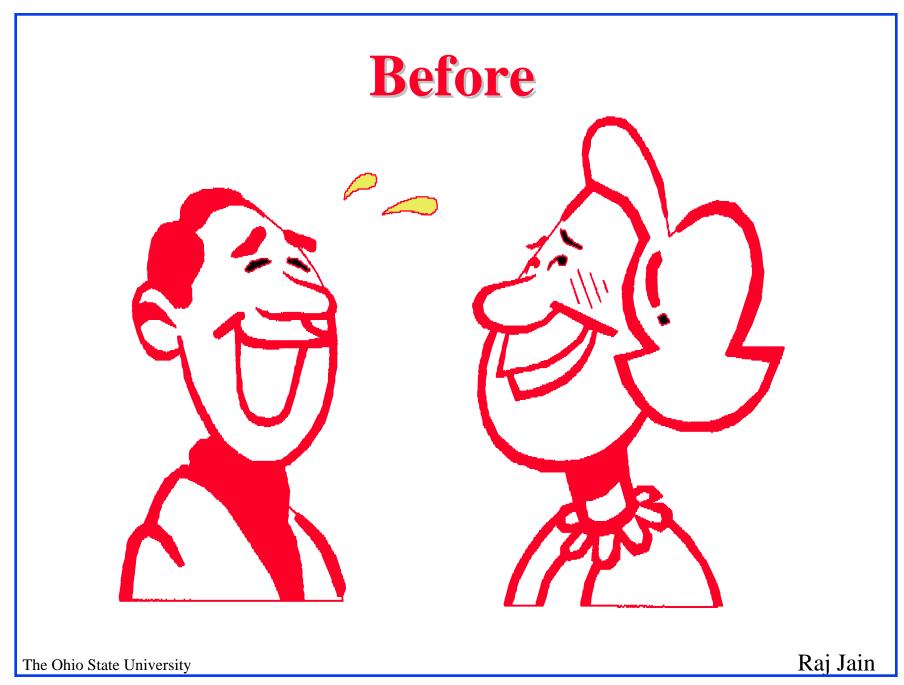
5



## **ATM QoS: Issues**

- $\Box$  Can't easily aggregate QoS: VP =  $\Sigma$  VCs
- □ Can't easily specifiy QoS: What is the CDV required for a movie?
- $\square$  Signaling too complex  $\Rightarrow$  Need Lightweight Signaling
- □ Need Heterogeneous Point-to-Multipoint: Variegated VCs
- Need QoS Renegotiation
- Need Group Address
- Need priority or weight among VCs to map DiffServ and 802.1D

## **Integrated Services**


- □ Best Effort Service: Like UBR.
- □ Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w MCR
- ☐ Guaranteed Service: rt-VBR
  - Firm bound on data throughput and <u>delay</u>.
  - Delay jitter or average delay not guaranteed or minimized.
  - Every element along the path must provide delay bound.
  - o Is not always implementable, e.g., Shared Ethernet.
  - Like CBR or rt-VBR

#### **RSVP**

- Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- Sets up reservations at each hop



The Ohio State University



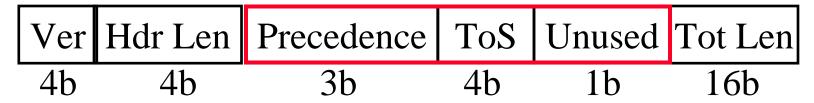
## **After**





The Ohio State University

# Problems with RSVP and Integrated Services


- Complexity in routers: packet classification, scheduling
- □ Scalable in number of receivers per flow but Per-Flow State:  $O(n) \Rightarrow Not$  scalable with # of flows. Number of flows in the backbone may be large.
  - ⇒ Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations? Support for accounting and security.
  - $\Rightarrow$  RSVP admission policy (rap) working group.

The Ohio State University

#### **Problems (Cont)**

- □ Receiver Based:
  - Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?
- □ Soft State: Need route/path pinning (stability). Limit number of changes during a session.
- □ RSVP does not have negotiation and backtracking
- □ Throughput and delay guarantees require support of lower layers. Shared Ethernet ⇒ IP can't do GS or CLS. Need switched full-duplex LANs.
- □ Can't easily do RSVP on ATM either
- Most of these arguments also apply to integrated services.

#### **Differentiated Services**



- □ IPv4: 3-bit precedence + 4-bit ToS
- □ OSPF and integrated IS-IS can compute paths for each ToS
- Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- □ DS working group formed February 1998
- □ Charter: Define ds byte (IPv4 ToS field)
- □ Mail Archive: <a href="http://www-nrg.ee.lbl.gov/diff-serv-arch/">http://www-nrg.ee.lbl.gov/diff-serv-arch/</a>

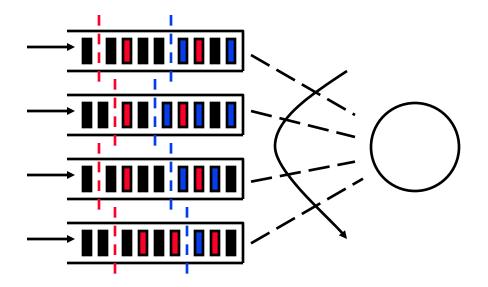
#### **Service**

- Service: Offered by the protocol layer
  - Application: Mail, FTP, WWW, Video,...
  - Transport: Delivery, Express Delivery,...
     Best effort, controlled load, guaranteed service
  - DS group will not develop services
     They will standardize "Per-Hop Behaviors"

The Ohio State University Raj Jain

15

## **Per-hop Behaviors**




- Externally Observable Forwarding Behavior
- □ x% of link bandwidth
- ☐ Minimum x% and fair share of excess bandwidth
- Priority relative to other PHBs
- □ PHB Groups: Related PHBs. PHBs in the group share common constraints, e.g., loss priority, relative delay

# **Expedited Forwarding**

- Also known as "Premium Service"
- □ Virtual leased line
- Similar to CBR
- Guaranteed minimum service rate
- □ Policed: Arrival rate < Minimum Service Rate
- □ Not affected by other data PHBs
  - ⇒ Highest data priority (if priority queueing)
- □ Code point: 101 110

# **Assured Forwarding**



- PHB Group
- □ Four Classes: No particular ordering
- ☐ Three drop preference per class

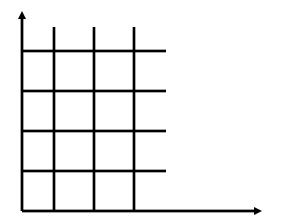
# **Assured Forwarding (Cont)**

- □ DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- □ Similar to nrt-VBR/ABR/GFR
- Code Points:

| Drop Prec. | Class 1 | Class 2 | Class 3 | Class 4 |
|------------|---------|---------|---------|---------|
| Low        | 010 000 | 011 000 | 100 000 | 101 000 |
| Medium     | 010 010 | 011 010 | 100 010 | 101 010 |
| High       | 010 100 | 011 100 | 100 100 | 101 100 |

□ Avoids 11x000 (used for network control)

#### **AF Simulation Results**


- 1. W/O DPs, TCP is punished for good behaviour
- 2. Fairness is also poor.
- 3. Three DPs give better performance for TCP flows when there is considerable unused bandwidth.

Reason: TCP does not get any share of excess bandwidth in presence of UDP.

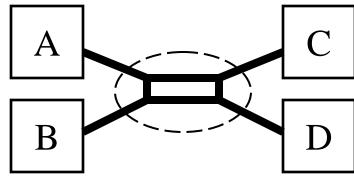
**Reference**: M. Goyal, et al, "Effect of Number of Drop Precedences in Assured Forwarding," IETF draft-goyal-dpstdydiffserv-00.txt, March+July 1999, <a href="http://www.cis.ohio-state.edu/~jain/ietf/dpstdy2.htm">http://www.cis.ohio-state.edu/~jain/ietf/dpstdy2.htm</a>

# On Drop Preferences

Classes



**Drop Preferences** 


- We have two dimensions of control
  - Classes = Queues
  - Drop Preferences = Right to enter the queue
- $\Box$  Classes  $\Rightarrow$  Directly controls bandwidth allocation

# **Drop Preferences (Cont)**

- $\square$  DPs  $\Rightarrow$  Controls buffer allocation
  - ⇒ Indirectly affects bandwidth allocation
    - Depends upon the arrival pattern
      - $\Rightarrow$  Random  $\Rightarrow$  Not Reliable
- ☐ Given a limited number of PHB's, it is better to have more classes than more DPs

#### **DiffServ Problems (Cont)**

- $\supset$  DiffServ is unidirectional  $\Rightarrow$  No receiver control
- Modified DS field ⇒ Theft and Denial of service. Ingress node should ensure.
- How to ensure resource availability inside the network?
- QoS is for the aggregate not per-destination.
   Multi-campus enterprises need inter-campus QoS.

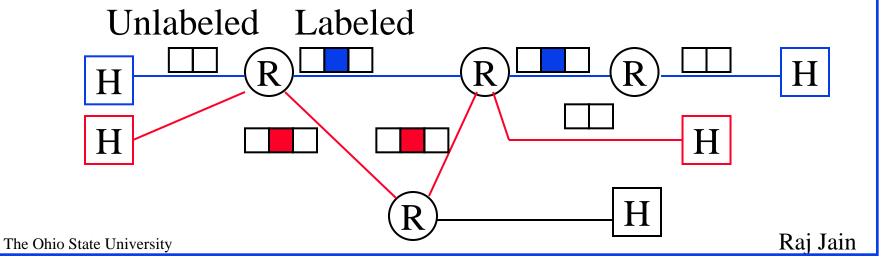


The Ohio State University

#### **DiffServ Problems (Cont)**

- QoS is for the aggregate not micro-flows.
   Not intended/useful for end users. Only ISPs.
  - Large number of short flows are better handled by aggregates.
  - Long flows (voice and video sessions) need perflow guarantees.
  - High-bandwidth flows (1 Mbps video) need perflow guarantees.
- □ All IETF approaches are open loop control ⇒ Drop Closed loop control ⇒ Wait at source
   Data prefers waiting ⇒ Feedback

The Ohio State University

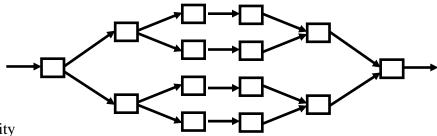

#### **DiffServ Problems (Cont)**

- $\Box$  Guarantees  $\Rightarrow$  Stability of paths
  - ⇒ Connections (hard or soft)

Need route pinning or connections.

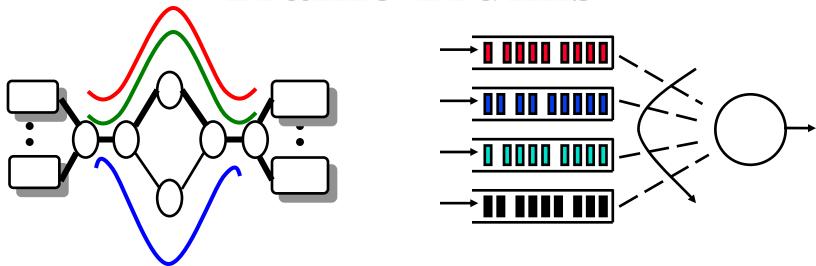
## Multiprotocol Label Switching

- □ Label = Circuit number = VC Id
- ☐ Ingress router/host puts a label. Exit router strips it off.
- □ Switches switch packets based on labels.
   Do not need to look inside ⇒ Fast.

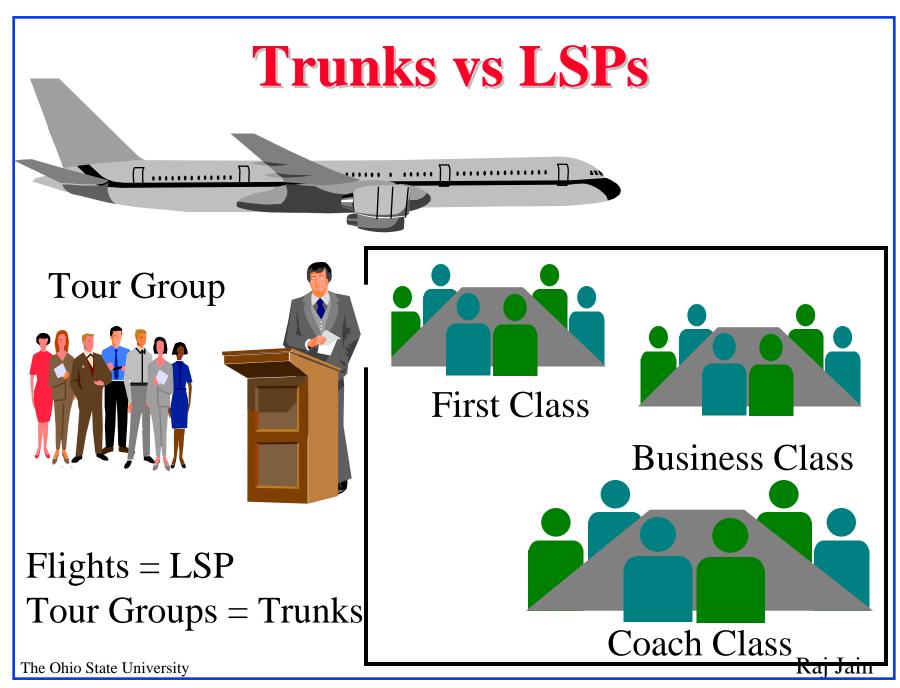



# Traffic Engineering Objectives

- User's Performance Optimization
  - ⇒ Maximum throughput, Min delay, min loss, min delay variation
- □ Efficient resource allocation for the provider
  - ⇒ Efficient Utilization of all links
  - ⇒ Load Balancing on parallel paths
  - ⇒ Minimize buffer utilization
  - Current routing protocols (e.g., RIP and OSPF) find the shortest path (may be over-utilized).
- QoS Guarantee: Selecting paths that can meet QoS
- Enforce Service Level agreements
- $\square$  Enforce policies: Constraint based routing  $\supseteq$  QoSR

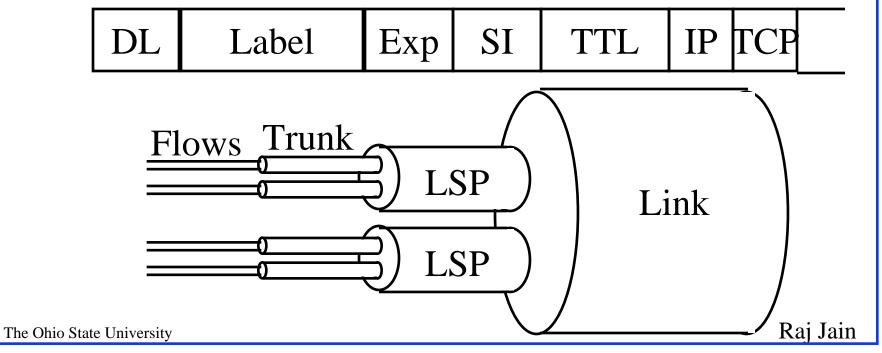

#### **MPLS Mechanisms for TE**

- Signaling, Admission Control, Routing
- Explicit routing of LSPs
- Constrained based routing of LSPs
   Allows both Traffic constraints and Resource
   Constraints (Resource Attributes)
- ☐ Hierarchical division of the problem (Label Stacks)
- □ Traffic trunks allow aggregation and disaggregation (Shortest path routing allows only aggregation)




The Ohio State University

#### **Traffic Trunks**



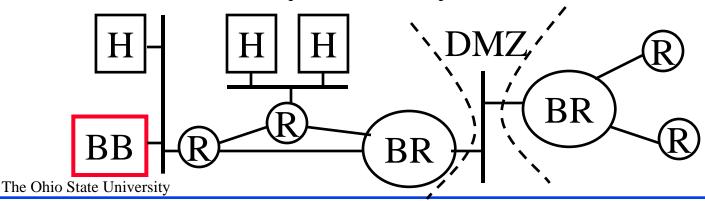

- □ Trunk: Aggregation of flows of same class on same LSP
- Trunks are routable
  - ⇒ LSP through which trunk passes can be changed
- □ Class ⇒ Queue, LSP ⇒ Next hop
   Class can be coded in Exp or Label field. Assume Exp.



#### Flows, Trunks, LSPs, and Links

- Label Switched Path (LSP):
  All packets with the same label
- □ Trunk: Same Label+Exp
- □ Flow: Same MPLS+IP+TCP headers




#### **MPLS Simulation Results**

- □ Total network throughput improves significantly with proper traffic engineering
- Congestion-unresponsive flows affect congestionresponsive flows
  - Separate trunks for different types of flows
- Trunks should be end-to-end
  - Trunk + No Trunk = No Trunk

**Reference**: P. Bhaniramka, et al, "*QoS using Traffic Engineering over MPLS: An Analysis*," IETF draft-bhani-mpls-te-anal-00.txt, March 1999, <a href="http://www.cis.ohio-state.edu/~jain/teanal.htm">http://www.cis.ohio-state.edu/~jain/teanal.htm</a>

#### **Bandwidth Broker**

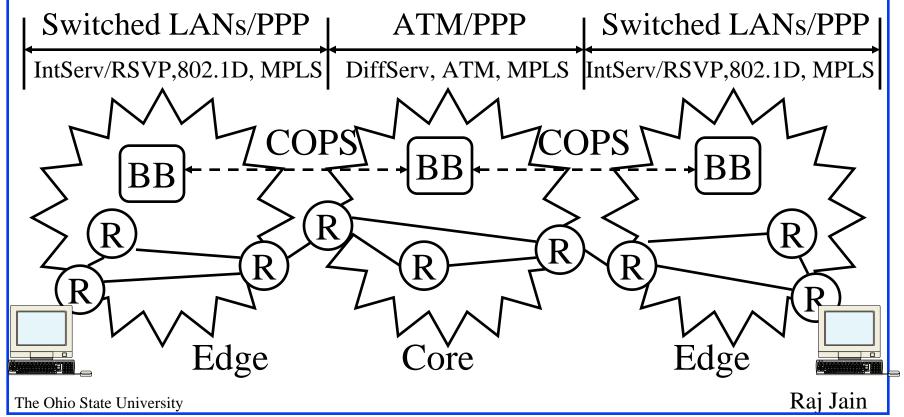
- Repository of policy database. Includes authentication
- ☐ Users request bandwidth from BB
- BB sends authorizations to leaf/border routers Tells what to mark.
- □ Ideally, need to account for bandwidth usage along the path
- □ BB allocates only boundary or bottleneck





Dest Addr | Src Addr | Tag Prot ID | Pri | CFI | VLAN ID

- 802.1Q header -


CFI = Canonical Format 'Indicator (Source Routing)

Prot Type | Payload | FCS

- □ **Up to eight priorities:** Strict.
  - 1 Background
  - 2 Spare
  - 0 Best Effort
  - 3 Excellent Effort
  - 4 Control load
  - 5 Video (Less than 100 ms latency and jitter)
  - 6 Voice (Less than 10 ms latency and jitter)
- 7 Network Control

#### **End-to-end View**

- ATM/PPP backbone, Switched LANs/PPP in Stub
- □ IntServ/RSVP, 802.1D, MPLS in Stub networks
- □ DiffServ, ATM, MPLS in the core



#### **QoS Debate Issues**

- Massive Bandwidth vs Managed Bandwidth
- Per-Flow vs Aggregate
- Source-Controlled vs Receiver Controlled
- Soft State vs Hard State
- Path based vs Access based
- Quantitative vs Qualitative
- □ Absolute vs Relative
- □ End-to-end vs Per-hop
- □ Static vs Feedback-based
- One-way multicast vs n-way multicast
- Homogeneous multicast vs heterogeneous multicast
- Single vs multiple bottlenecks: Scheduling

Comparison of QoS Approaches

| Issue                     | ATM         | IntServ     | DiffServ    | MPLS     | IEEE        |
|---------------------------|-------------|-------------|-------------|----------|-------------|
|                           |             |             |             |          | 802.3D      |
| Massive Bandwidth         | Managed     | Managed     | Massive     | Managed  | Massive     |
| vs Managed                |             |             |             |          |             |
| Bandwidth                 |             |             |             |          |             |
| Per-Flow vs               | Both        | Per-flow    | Aggregate   | Both     | Aggregate   |
| Aggregate                 |             |             |             |          |             |
| Source-Controlled         | Unicast     | Receiver    | Ingress     | Both     | Source      |
| vs Receiver               | Source,     |             |             |          |             |
| Controlled                | Multicast   |             |             |          |             |
|                           | both        |             |             |          |             |
| Soft State vs Hard        | Hard        | Soft        | None        | Hard     | Hard        |
| State                     |             |             |             |          |             |
| Path based vs             | Path        | Path        | Access      | Path     | Access      |
| Access based              |             |             |             |          |             |
| Quantitative vs           | Quantitativ | Quantitativ | Mostly      | Both     | Qualitative |
| Qualitative               | e           | e+Qualitati | qualitative |          |             |
|                           |             | ve          |             |          |             |
| Absolute vs Relative      | Absolute    | Absolute    | Mostly      | Absolute | Relative    |
|                           |             |             | Relative    | plus     |             |
| The Ohio State University |             |             |             | relative | Raj Jain    |

# **Comparison (Cont)**

| Issue                                                     | ATM                    | IntServ           | DiffServ | MPLS            | IEEE<br>802.3D |
|-----------------------------------------------------------|------------------------|-------------------|----------|-----------------|----------------|
| End-to-end vs Per-<br>hop                                 | e-e                    | e-e               | Per-hop  | e-e             | Per-hop        |
| Static vs Feedback-based                                  | Both                   | Static            | Static   | Static          | Static         |
| One-way multicast vs n-way multicast                      | Only one-<br>way       |                   |          |                 |                |
| Homogeneous<br>multicast vs<br>heterogeneous<br>multicast | Homogene<br>ous        | Heterogen<br>eous | N/A      | Homogene<br>ous | N/A            |
| Single vs multiple bottlenecks: Scheduling                | Multiple<br>bottleneck | Multiple          |          | Multiple        |                |

#### Summary



- □ ATM: CBR, VBR, ABR, UBR, GFR
- ☐ Integrated Services: GS = rtVBR, CLS = nrt-VBR
- Signaling protocol: RSVP
- Differentiated Services will use the DS byte
- □ MPLS allows traffic engineering and is most promising
- 802.1D allows priority

The Ohio State University

#### References

- □ For a detailed list of references see:
  <u>refs/ipqs\_ref.htm</u>
- Additional papers and presentations on QoS are at: <a href="http://www.cse.ohio-state.edu/~jain/">http://www.cse.ohio-state.edu/~jain/</a>

The Ohio State University

Raj Jain

40

#### Thank You!

