Quality of Service In Data Networks: Problems, Solutions, and Issues

Raj Jain, Panel Chair

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

- □ ATM QoS and Issues
- □ Integrated services/RSVP and Issues
- Differentiated Services and Issues
- **QoS** using MPLS
- □ End-to-end QoS
- This is an update to the May'98 talk <u>http://www.cis.ohio-state.edu/~jain/talks/ipqos.htm</u>

- Senders want to send traffic any time with high load, high burstiness
- □ Receivers expect low delay and high throughput
- Since links are expensive, providers want to minimize the infrastructure

 $\Box_{\text{The Ohio State University}} \text{If one of the three gives in} \Rightarrow \text{no problem}$

Raj Jain

What is QoS?

- Predictable Quality: Throughput, Delay, Loss, Delay jitter, Error rate
- □ Opposite of best effort = Random quality

Mechanisms:

- Capacity Planning
- Classification, Queueing, Scheduling, buffer management
- QoS based path determination, Route pinning
- Shaping, policing, admission control
- Signaling

ATM Service Categories

- **CBR**: Throughput, delay, delay variation
- **rt-VBR**: Throughput, delay, delay variation
- **nrt-VBR**: Throughput
- **UBR**: No Guarantees
- **GFR**: Minimum Throughput
- □ ABR: Minimum Throughput. Very low loss. Feedback.
- □ ATM also has QoS-based routing (PNNI)

ATM QoS: Issues

- \Box Can't easily aggregate QoS: VP = Σ VCs
- Can't easily specify QoS: What is the CDV required for a movie?
- $\square Signaling too complex \Rightarrow Need Lightweight Signaling$
- Need Heterogeneous Point-to-Multipoint: Variegated VCs
- Need QoS Renegotiation
- Need Group Address
- Need priority or weight among VCs to map DiffServ and 802.1D

Integrated Services

□ Best Effort Service: Like UBR.

- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w MCR
- Guaranteed Service: rt-VBR
 - Firm bound on data throughput and <u>delay</u>.
 - Delay jitter or average delay not guaranteed or minimized.
 - Every element along the path must provide delay bound.
 - Is not always implementable, e.g., Shared Ethernet.
 Like CBR or rt-VBR

RSVP

- □ Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- □ Sets up reservations at each hop

Problems with RSVP and Integrated Services

- Complexity in routers: packet classification, scheduling
- ❑ Scalable in number of receivers per flow but Per-Flow State: O(n) ⇒ Not scalable with # of flows. Number of flows in the backbone may be large. ⇒ Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations?
 Support for accounting and security.

 $\Rightarrow RSVP admission policy (rap) working group.$ The Ohio State University Raj Jair

Problems (Cont)

- □ Receiver Based:
 - Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?
- Soft State: Need route/path pinning (stability).
 Limit number of changes during a session.
- □ RSVP does not have negotiation and backtracking
- □ Throughput and delay guarantees require support of lower layers. Shared Ethernet ⇒ IP can't do GS or CLS. Need switched full-duplex LANs.
- □ Can't easily do RSVP on ATM either
- Most of these arguments also apply to integrated services. The Ohio State University

Rai Jain

Differentiated Services

Ver	Hdr Len	Precedence	ToS	Unused	Tot Len
4b	4b	3b	4b	1b	16b

- □ IPv4: 3-bit precedence + 4-bit ToS
- OSPF and integrated IS-IS can compute paths for each ToS
- □ Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- DS working group formed February 1998
- □ Charter: Define ds byte (IPv4 ToS field)
- □ Mail Archive: <u>http://www-nrg.ee.lbl.gov/diff-serv-arch/</u>

DiffServ Concepts

- □ Micro-flow = A single application-to-application flow
- Traffic Conditioners: Meters (token bucket), Markers (tag), Shapers (delay), Droppers (drop)
- Behavior Aggregate (BA) Classifier: Based on DS byte only

Multi-field (MF) Classifiers: Based on IP addresses, ports, DS-byte, etc..

Diff-Serv Concepts (Cont)

□ Service: Offered by the protocol layer

- Application: Mail, FTP, WWW, Video,...
- Transport: Delivery, Express Delivery,... Best effort, controlled load, guaranteed service
- DS group will not develop services They will standardize "Per-Hop Behaviors"

Per-hop BehaviorsInPHBOut

- Externally Observable Forwarding Behavior
- □ x% of link bandwidth
- □ Minimum x% and fair share of excess bandwidth
- □ Priority relative to other PHBs
- PHB Groups: Related PHBs. PHBs in the group share common constraints, e.g., loss priority, relative delay

Expedited Forwarding

- □ Also known as "Premium Service"
- □ Virtual leased line
- □ Similar to CBR
- Guaranteed minimum service rate
- Policed: Arrival rate < Minimum Service Rate</p>
- Not affected by other data PHBs
 ⇒ Highest data priority (if priority queueing)
- **Code point:** 101 110

□ PHB <u>Group</u>

- □ Four Classes: No particular ordering
- □ Three drop preference per class

Assured Forwarding (Cont)

- DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- □ Similar to nrt-VBR/ABR/GFR

Code Points:

Drop Prec.	Class 1	Class 2	Class 3	Class 4
Low	010 000	011 000	100 000	101 000
Medium	010 010	011 010	100 010	101 010
High	010 100	011 100	100 100	101 100

□ Avoids 11x000 (used for network control)

AF Simulation Results

- 1. W/O DPs, TCP is punished for good behaviour
- 2. Fairness is also poor.

 Three DPs give the same perf for TCP as two DPs
 Reason: TCP does not distinguish between loss of packets of different drop precedences

Reference: M. Goyal, et al, "Effect of Number of Drop Precedences in Assured Forwarding," IETF draft-goyal-dpstdydiffserv-00.txt, March 1999, <u>http://www.cis.ohio-</u> state.edu/~jain/ietf/dpstdy.htm

The Ohio State University

Raj Jain

Drop Preferences (Cont)

- □ DPs ⇒ Controls buffer allocation
 ⇒ Indirectly affects bandwidth allocation
 - Depends upon the arrival pattern \Rightarrow Random \Rightarrow Not Reliable
- □ Given a limited number of PHB's, it is better to have more classes than more DPs

Problems with DiffServ

- □ per-hop ⇒ Need at every hop One non-DiffServ hop can spoil all QoS
- End-to-end ≠ Σ per-Hop
 Designing end-to-end services with weighted guarantees at individual hops is difficult.
 Only EF will work.
- Designed for static Service Level Agreements (SLAs) Both the network topology and traffic are highly dynamic.
- □ Multicast ⇒ Difficult to provision Dynamic multicast membership ⇒ Dynamic SLAs? The Ohio State University

DiffServ Problems (Cont)

- \Box DiffServ is unidirectional \Rightarrow No receiver control
- □ Modified DS field ⇒ Theft and Denial of service. Ingress node should ensure.
- How to ensure resource availability inside the network?
- QoS is for the aggregate not per-destination.
 Multi-campus enterprises need inter-campus QoS.

DiffServ Problems (Cont)

- QoS is for the aggregate not micro-flows.
 Not intended/useful for end users. Only ISPs.
 - Large number of short flows are better handled by aggregates.
 - Long flows (voice and video sessions) need perflow guarantees.
 - High-bandwidth flows (1 Mbps video) need perflow guarantees.

 □ All IETF approaches are open loop control ⇒ Drop Closed loop control ⇒ Wait at source
 Data prefers waiting ⇒ Feedback
 The Ohio State University

DiffServ Problems (Cont)

Guarantees ⇒ Stability of paths
 ⇒ Connections (hard or soft)
 Need route pinning or connections.

- Entry "label switch router (LSR)" attaches a label to the packet based on the route
- □ Other LSRs switch packets based on labels.
 Do not need to look inside ⇒ Fast.
- ❑ Labels have local significance
 ⇒ Different label at each hop (similar to VC #)
- □ Exit LSR strips off the label

Traffic Engineering Using MPLS

- Traffic Engineering = Performance Optimization
 = Efficient resource allocation, Path splitting
 ⇒ Maximum throughput, Min delay, min loss
 ⇒ Quality of service
- In MPLS networks: "Traffic Trunks" = SVCs Traffic trunks are routable entities like VCs
- Multiple trunks can be used in parallel to the same egress.
- Each traffic trunk can have a set of associated characteristics, e.g., priority, preemption, policing, overbooking

Flows, Trunks, LSPs, and Links

- Label Switched Path (LSP):
 All packets with the same label
- □ Trunk: Same Label+Exp
- □ Flow: Same MPLS+IP+TCP headers

MPLS Simulation Results

- Total network throughput improves significantly with proper traffic engineering
- Congestion-unresponsive flows affect congestionresponsive flows
 - Separate trunks for different types of flows
- □ Trunks should be end-to-end
 - Trunk + No Trunk = No Trunk

Reference: P. Bhaniramka, et al, "QoS using Traffic Engineering over MPLS: An Analysis," IETF draft-bhani-mpls-te-anal-00.txt, March 1999, <u>http://www.cis.ohio-</u> <u>state.edu/~jain/teanal.htm</u>

Bandwidth Broker

- □ Repository of policy database. Includes authentication
- Users request bandwidth from BB
- BB sends authorizations to leaf/border routers Tells what to mark.
- Ideally, need to account for bandwidth usage along the path
- **BB** allocates only boundary or bottleneck

IEEE 802.1D Model

Dest Addr Src Addr Tag Prot ID Pri CFI VLAN ID

CFI = Canonical Format Indicator (Source Routing)

— 802.1Q header —
Prot Type Payload FCS

Up to eight priorities: Strict.

- 1 Background
- 2 Spare
- 0 Best Effort
- 3 Excellent Effort
- 4 Control load
- 5 Video (Less than 100 ms latency and jitter)
- 6 Voice (Less than 10 ms latency and jitter)

The Ohio State University Control

Raj Jain

End-to-end View

□ ATM/PPP backbone, Switched LANs/PPP in Stub □ IntServ/RSVP, 802.1D, MPLS in Stub networks □ DiffServ, ATM, MPLS in the core Switched LANs/PPP ATM/PPP Switched LANs/PPP IntServ/RSVP,802.1D, MPLS DiffServ, ATM, MPLS IntServ/RSVP,802.1D, MPLS R Edge ore Raj Jain The Ohio State University

- □ ATM: CBR, VBR, ABR, UBR, GFR
- □ Integrated Services: GS = rtVBR, CLS = nrt-VBR
- □ Signaling protocol: RSVP
- Differentiated Services will use the DS byte
- MPLS allows traffic engineering and is most promising
- **BO2.1D** allows priority

Raj Jain

References

- □ For a detailed list of references see: <u>refs/ipqs_ref.htm</u>
- Additional papers and presentations on QoS are at: <u>http://www.cse.ohio-state.edu/~jain/</u>

