Extending Blockchains for Risk Management and Decision Making

Raj Jain

Barbara J. and Jerome R. Cox, Jr. Professor of Computer Science and Engineering, Washington University in Saint Louis Saint Louis, MO 63130 USA

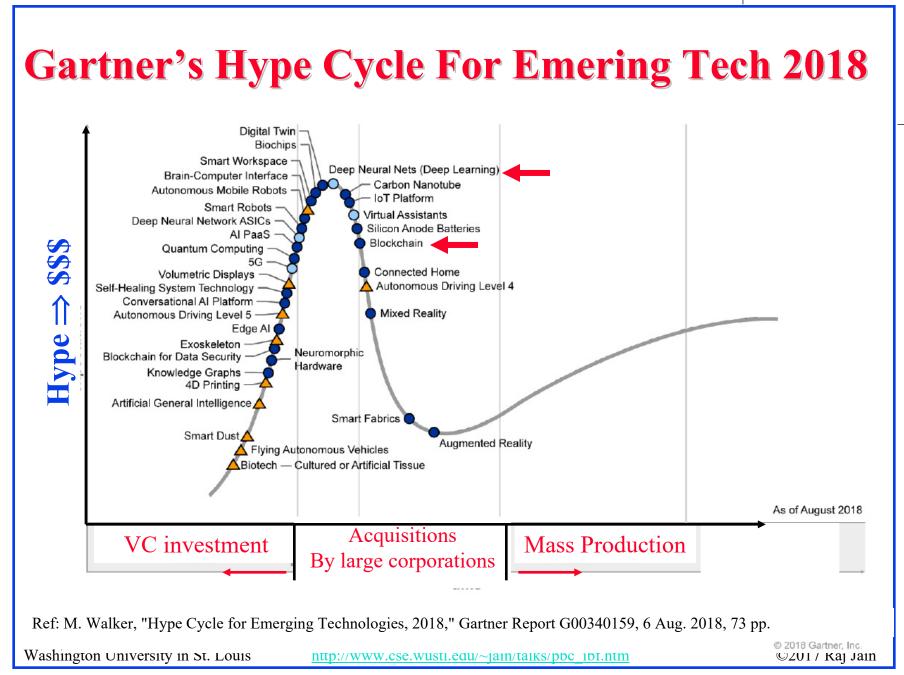
Jain@wustl.edu

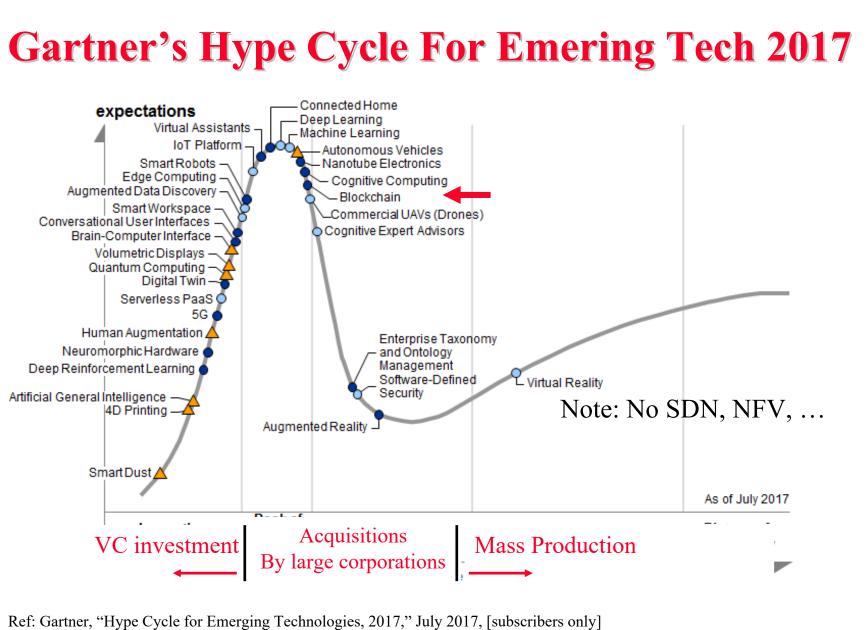
Innovation and Breakthrough Forum 2018 Hong Kong, Nov. 9, 2018

Audio/Video recordings of this talk are available at:

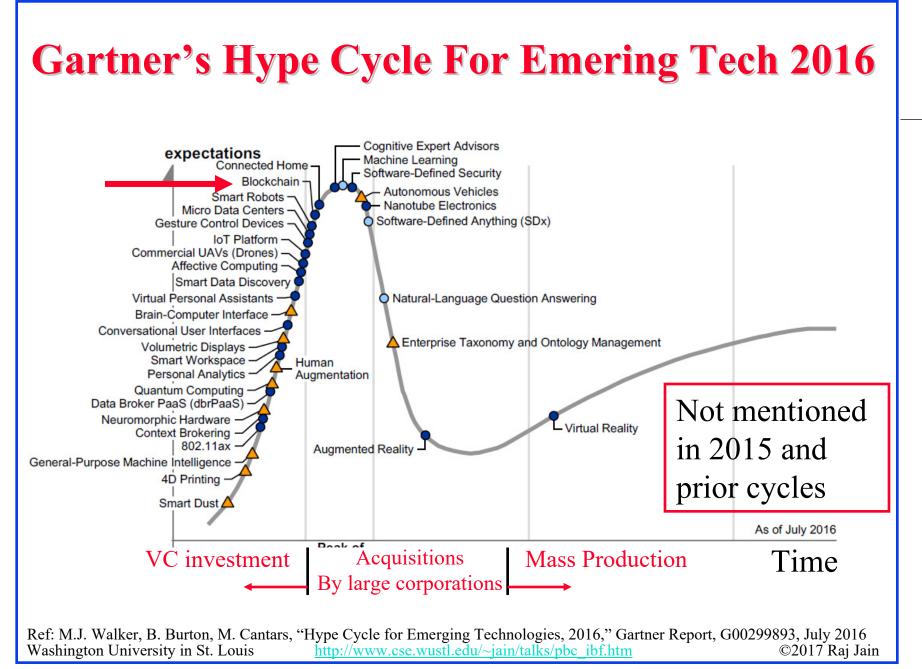
http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

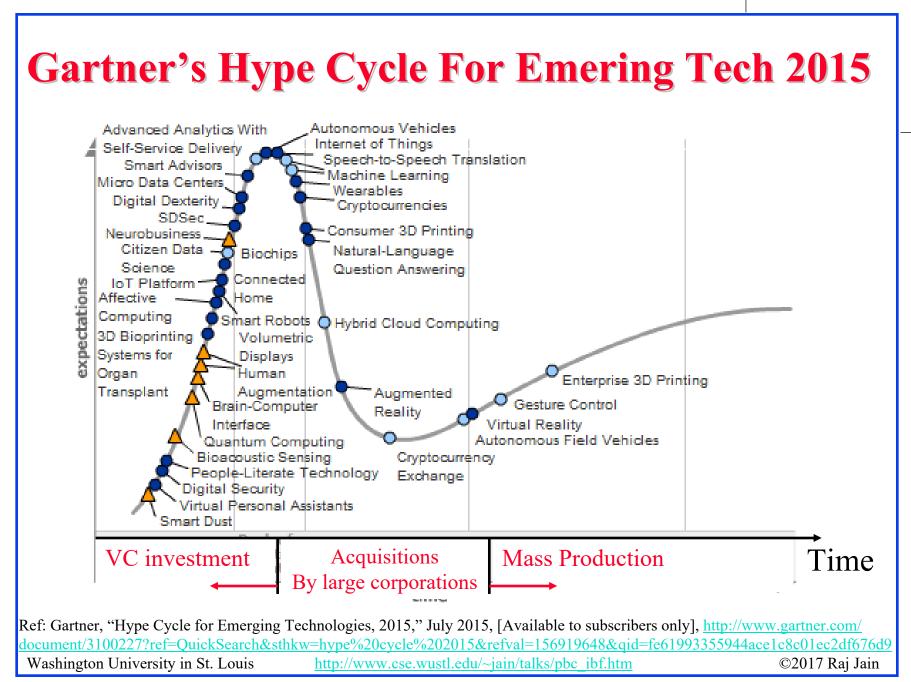
Washington University in St. Louis


http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm


©2017 Raj Jain

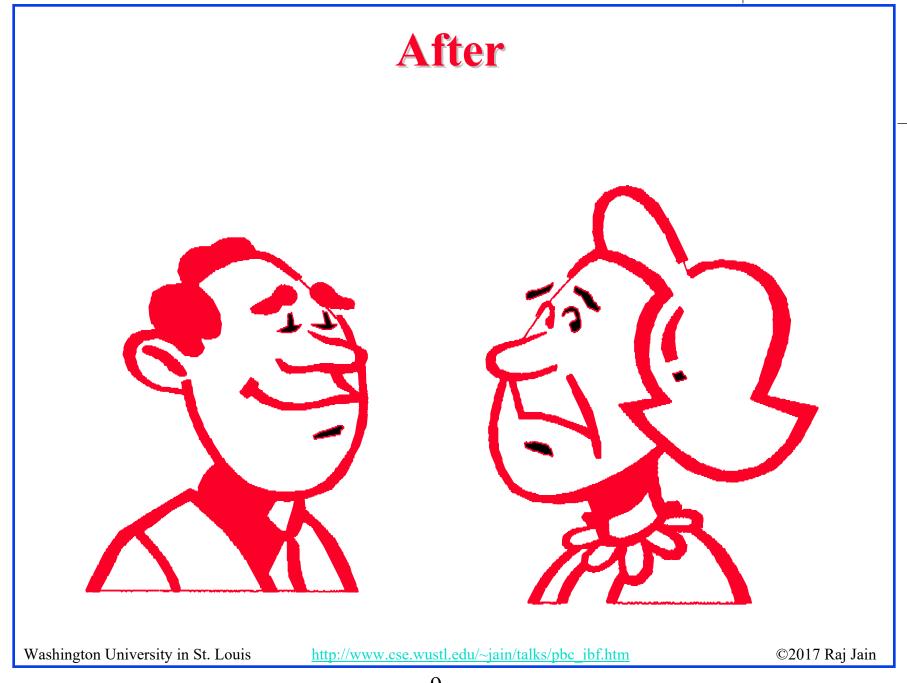
- 1. Should we invest in blockchain technology?
- 2. Strengths and weaknesses of the current blockchains
- Blockchain extension:
 Decision making by converting data to knowledge
- 4. Empirical feasibility study


Washington University in St. Louis



wasnington University in St. Louis <u>http://www.cse.wusti.edu/~jain/taiks/pbc_ibi.htm</u>

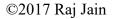
©2017 Kaj Jain



Will Blockchain Succeed?

- Blockchain is near the top of hype
- Other examples of hype:
 - □ Personal Computer 1981
 - □ Internet 1994^{*}
 - □ Y2K 1999
 - □ Bitcoin 2014
- □ Ignoring hype can lead to failure
 - □ DEC ignored the PC market
- Being a leader can change your future if the hype succeeds
 Cisco
- Betting on false hype can lead to wastage
 Y2K

*Ref: Clifford Stoll, "Silicon Snake Oil: Second Thoughts on Information Highway," Anchor, 1996, 256 pp. Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm</u>

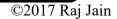

Networking: Failures vs Successes

- □ 1980: Broadband Ethernet 10Broad36 (vs. baseband)
- □ 1984: ISDN (vs. Modems)
- □ 1986: MAP/TOP or Token Bus (vs Ethernet)
- □ 1988: OSI (vs. TCP/IP)
- □ 1991: DQDB
- □ 1992: XTP (vs. TCP)
- □ 1994: CMIP (vs. SNMP)
- □ 1995: FDDI (vs. Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs. Ethernet)
- □ 1997: ATM to Desktop (vs. Ethernet)
- □ 1998: ATM Switches (vs. IP routers)
- □ 1998: MPOA (vs. MPLS)
- □ 1999: Token Rings (vs. Ethernet)
- \square 2003: HomeRF (vs. WiFi)
- □ 2007: Resilient Packet Ring (vs. Carrier Ethernet)
- QoS, Mobile IP, IP Multicast, IntServ, DiffServ, ...

Technology alone does not mean success.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm


Requirements for Technology Success

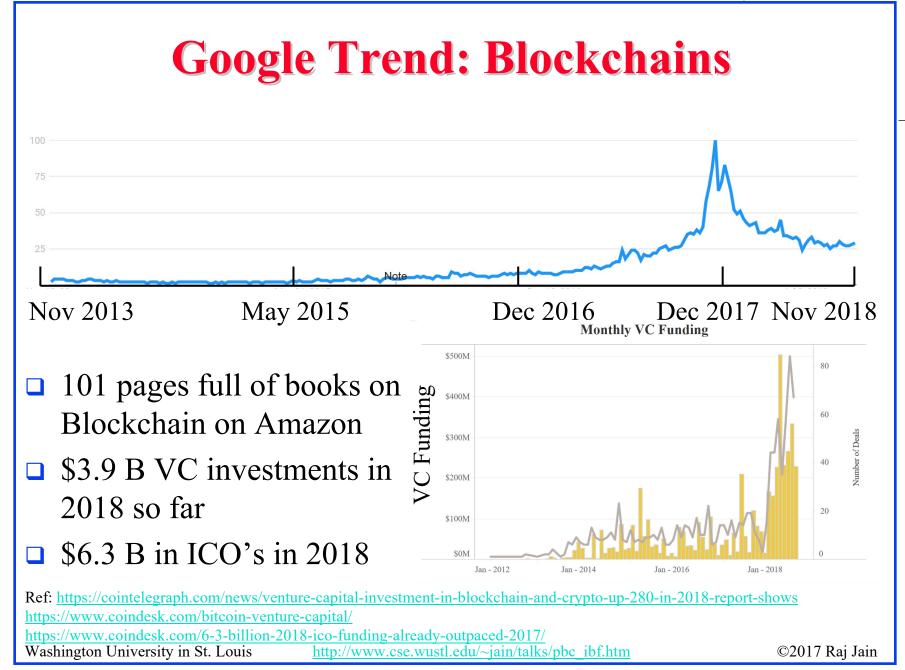
- 1. Low Cost: Low startup cost \Rightarrow Each customer must save. $2x \cos t \Rightarrow 10x$ performance
- 2. Killer Application (Crypto)
- Coexistence with legacy (Current FinTech) Existing infrastructure is more important than new technology ⇒ Evolution
- 4. Timely completion
- 5. Promised Performance (PoW)
- 6. Manageability
- 7. Interoperability

Transition strategy is very important


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Old House vs. New House


New needs:
 Solution 1: Fix the old house
 Solution 2: Buy a new house
 Changing millions of houses is difficult.

Given the current state of FinTech, clean slate is difficult

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

©2017 Raj Jain

Strengths of Blockchains

- 1. Decentralized \Rightarrow No single point of failure/attack
- 2. No trust assumed among the nodes \Rightarrow Decentralized consensus
- 3. Cryptographic Security
- 4. Non-Repudiation guarantee

Can the Blockchains be Enhanced?

Limitation 1: Only facts are recorded

- □ Alice is married to Bob
- □ Alice gave 20 coins to Bob
- Alice signed a contract with Bob to pay 10 coins on the delivery of 1 kg of xx.
- **Limitation 2: Binary Validity**
- All transactions/contracts recorded on the blocks that are committed are valid
- □ Those not on the committed blocks and old are invalid
- □ So the recording is binary: only 0 or 1.
- **Limitation 3: Deterministic Events only**
- Can not record that I am only 90% sure that Alice gave 20 coins to Bob.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Ideas to Enhance Blockchains

- Blockchain is just a distributed data storage of valid transactions
- □ All transactions are *deterministic*
- □ What's Wrong?
 - □ Need to convert data to knowledge
 - □ We are in big data and machine learning age
 - □ Real life is probabilistic
 - □ Most to the decisions we make are probabilistic ⇒ All decisions have some risk

Washington University in St. Louis

Risk Propels Progress

- Banks take money from risk-averse savers and give them interest
- Banks invest the money in corporations
 ⇒ Takes the country forward
- □ Venture capitalists take risk by investing in half-cooked ideas
- □ Startups take risk by working in unchartered territories

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Decisions with Risk

- Sell insurance
- Buy insurance
- □ Sell a stock
- Buy a stock
- Download a software application on your computer
- □ Update Windows
- Marry someone

Example of a Contract: Wedding

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc ibf.htm

©2017 Raj Jain

Wedding (Cont)

□ Centralized

Decentralized

- □ Centralized registry
- □ Single point of failure
- **Easier** to hacked

Washington University in St. Louis

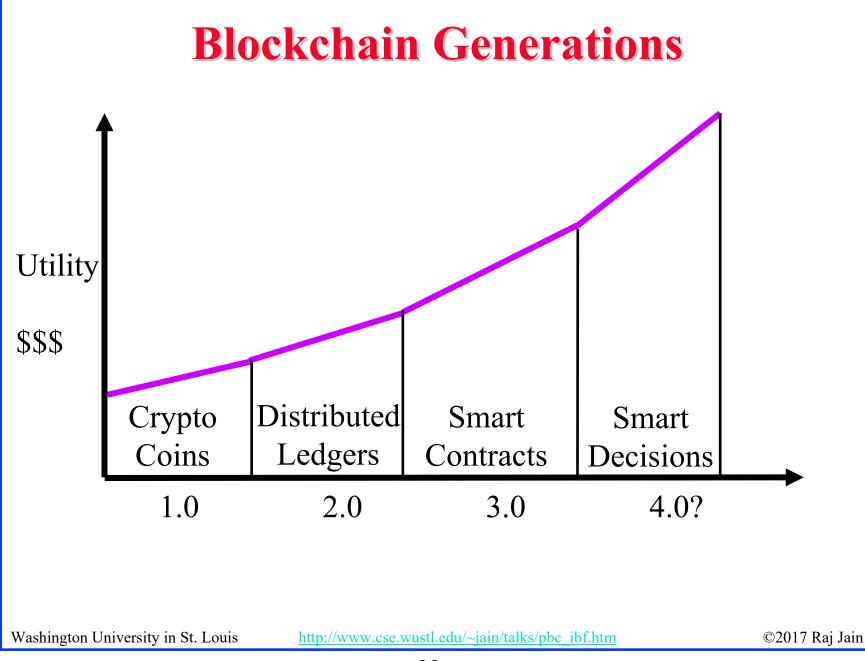
http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Decentralized

No single point of failure

Very difficult to hack

©2017 Raj Jain


Current Blockchain Process

- 1. Users broadcast transactions or smart contracts 2. Mining nodes validate transactions and create blocks 3. Blockchain nodes validate blocks and construct a chain
 - There are many users, many mining nodes, and many blockchain nodes.
- □ More nodes \Rightarrow Better. Less \Rightarrow Blockchain not required/useful.

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm</u>

Our Goal

- Moving the chain from deterministic to probabilistic
- Moving the chain from storage to computation
- Moving the chain from data to knowledge
- Moving the chain from information to decision making
- Google is moving from "Search" to "Suggest" using AI
- □ A blockchain that provides knowledge
 - A knowledge chain would be more useful

Probabilistic Blockchain Process

- 1. Agents broadcast transactions, Transactions = Opinions/decisions <
- 2. Mining nodes validate transactions, create a knowledge summary and create blocks
- 3. Blockchain nodes validate blocks and construct a chain
- □ Two types of users:
 - □ Agent nodes provide their probabilistic decisions
 - □ **Management nodes** that inquire the blockchain and use it for group decisions

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm</u>

©2017 Raj Jain

Probabilistic Blockchain Example

- **Issue**: Whether IBM stock will go up tomorrow?
- \Box *i*th Agent says that the probability that it will go up is p_i
- Summary of all opinions related to this issue is:

P(Stock will rise) = G($\{p_1, p_2, ..., p_n\}$)

Here, G is the summarizing function

□ In this simple case:

$$P = \frac{1}{n} \sum p_i$$

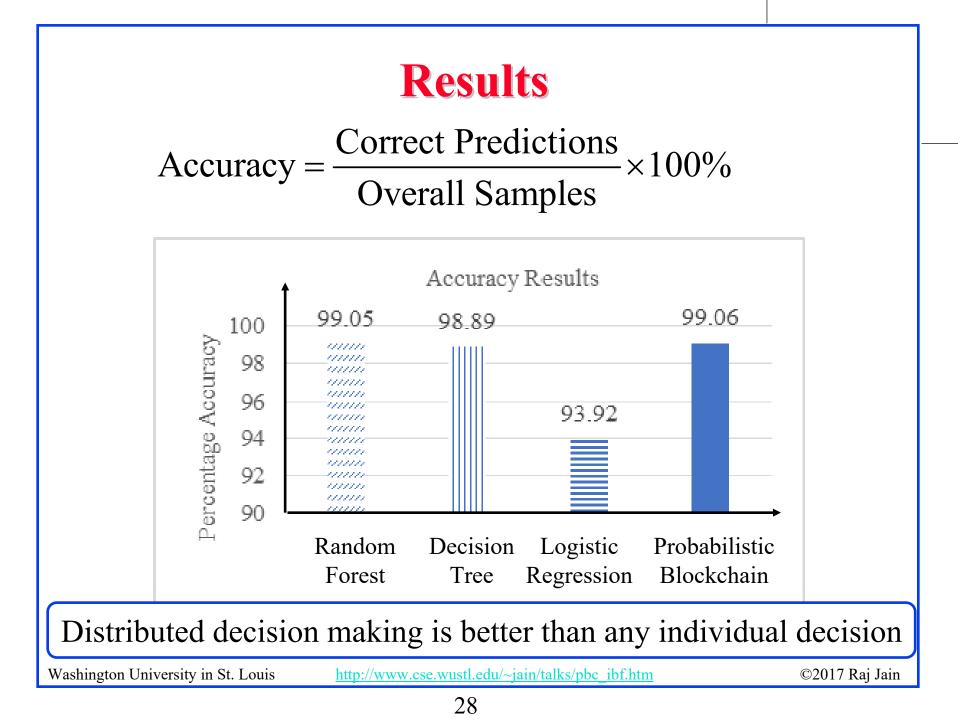
In this example, group decision is the first moment of the individual decisions

Ref: T. Salman, R. Jain, and L. Gupta, "**Probabilistic Blockchains: A Blockchain Paradigm for Collaborative Decision-Making**," 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON 2018), New York, NY, Nov. 8-10, 2018, 9 pp., <u>http://www.cse.wustl.edu/~jain/papers/pbc_uem.htm</u>

Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

©2017 Raj Jain

Generalizing the Summary Function

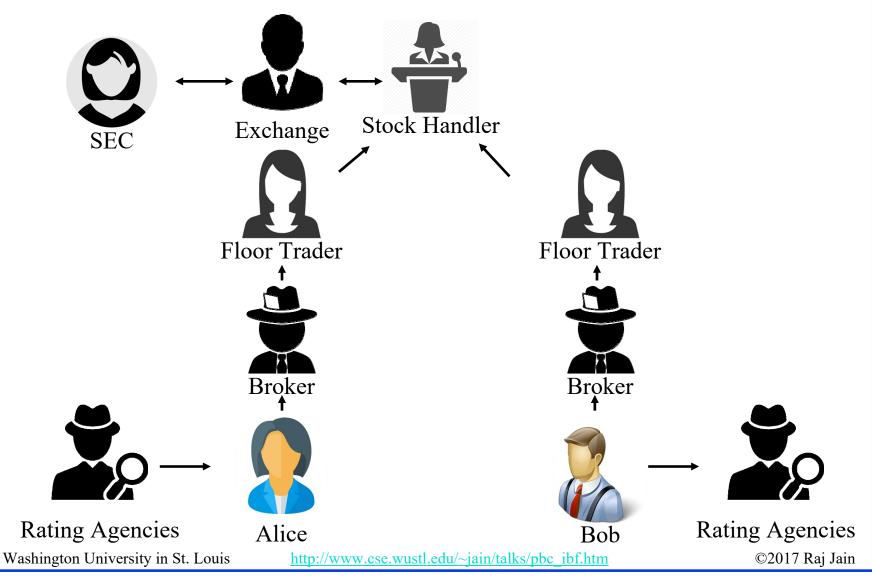

- Summary can be any other reasonable function of individual decisions:
 - □ 90-percentile
 - □ Median
 - □ Mode
 - □ 2nd Moment
- Summary can be a vector:
 {1st moment, 2nd moment, ..., nth moment}
- □ Summary can be the result of any statistical algorithm
- □ Summary can be the result of a data mining algorithm
- □ Summary can be the result of a machine learning algorithm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Empirical Validation

- □ Issue: Whether a network traffic pattern represents intrusion
- 1000 Agents using different machine learning algorithms give their decisions: Yes or No
 - □ Agents randomly pick one of the 3 algorithms:
 - Random Forest, Decision Tree, Logistic Regression
- Mining nodes summarize these decisions using the majority function

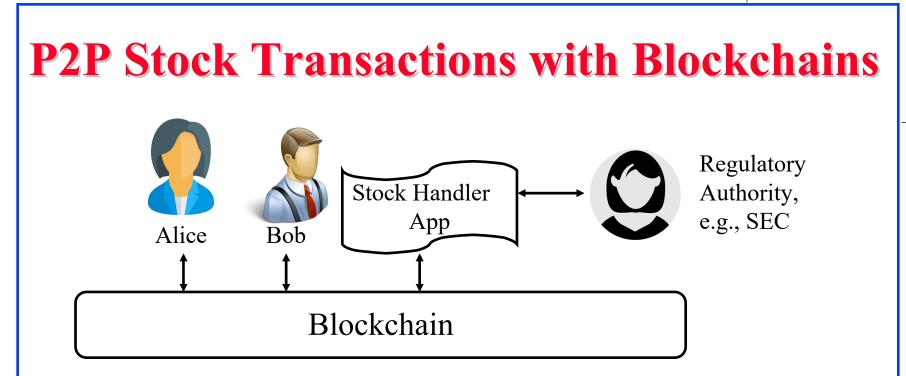

Blockchain 4.0: Database to Knowledge Base

- Blockchain = Distributed database of smart contracts
- □ Probabilistic blockchain = Knowledge + database
- Database = Who bought, who sold, what quantity, what price, what time
- \Box Knowledge =
 - □ Where the market is going?
 - □ Whether we should buy, sell, or hold?

Knowledge Chain

- Customer query to blockchain network: How is the IBM stock doing today?
- Blockchain to Customer: The stock is rising with a probability 90%, Confidence 60%, ...
- Totally distributed system with no national boundaries, exchange limitations, brokers in between

Stock Transactions without Blockchains



Stock Transactions without Blockchains

- 1. Alice has \$10,000 to invest
- 2. Alice reads reports from rating agencies: Morning Star, Ned Davis, Factset, ...
- 3. Alice calls her **broker** Fidelity to buy 10 shares of IBM
- 4. Fidelity sends the transaction to its **floor trader** in NYSE
- 5. Stock Exchange NYSE ensures that the transaction follows all SEC rules
- 6. Fidelity floor trader makes a bid with IBM Handler
- 7. Bob needs some money
- 8. Bob reads reports from rating agencies: Morning Star, Ned Davis, Factset
- 9. Bob calls Schwab to sell 20 shares of IBM
- 10. Schwab sends the transaction to its floor trader in NYSE
- 11. NYSE ensures that the transaction follows all SEC rules
- 12. Schwab floor trader gives the order to IBM handler
- 13. Handler matches buy and sell orders
- 14. Handler informs Schwab trader the price and amount
- 15. Handler informs Fidelity trader the price and amount
- 16. Fidelity tells Alice the price and the amount after deducting its commission
- 17. Fidelity deducts the amount from Alice's account
- 18. Schwab tells Bob the price and the amount after deducting its commission
- 19. Three days later the money shows up in Bob's account
- 20. There are many more steps if the transaction crosses the nation boundaries

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm</u>

©2017 Raj Jain

- 1. Alice submits a smart contract to buy the stock
- 2. Bob submits a smart contract to sell stock
- 3. Stock handler app matches the transactions, ensures that it complies with SEC rules and submits a transaction

Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

P2P Stock Transactions Benefits

- 1. Matching = Computation that can be done inside the blockchain by miners or outside by an application
- 2. Inside \Rightarrow In one block time, Outside \Rightarrow a few block time
- 3. Reduced number of intermediary
 - \Rightarrow Less cost and faster settlement
 - \Rightarrow Increased fairness and transparency

Ref: Blockchain Dude, "The Collision of Stock Exchanges and Blockchain," <u>https://hackernoon.com/the-collision-of-stock-exchanges-and-blockchain-55d222b87a8</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

©2017 Raj Jain

- 1. Blockchains provide an immutable, secure, distributed database
- 2. Three generations of blockchains: Crypto currency, Assets, Smart contract
- 3. All three generations are deterministic and provide storage
- 4. The next generation needs to connect computation and AI to make knowledge/decisions out of data
- 5. Consensus can be probabilistic result of any statistical algorithm, data mining, or machine learning

Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Related Papers

- Tara Salman, Raj Jain, and Lav Gupta, "Probabilistic Blockchains: A Blockchain Paradigm for Collaborative Decision-Making," 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON 2018), New York, NY, November 8-10, 2018, 9 pp., http://www.cse.wustl.edu/~jain/papers/pbc_uem.htm
- Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain, and Mohammed Samaka, "Security Services Using Blockchains: A State of the Art Survey" IEEE Communications Surveys and Tutorials, Accepted September 2018, 28 pp., <u>http://www.cse.wustl.edu/~jain/papers/bcs.htm</u>

Related Talks

Raj Jain, "Blockchains: Networking Applications," An invited talk at the 38th IEEE Sarnoff Symposium, Newark, NJ, Sep 19, 2017,

http://www.cse.wustl.edu/~jain/talks/blc_srnf.htm

- Raj Jain, "Blockchains: The Distributed Trust Technology," Keynote at The 2017 International Conference on Computer, Information and Telecommunication Systems (CITS 2017), Dalian, China, July 21, 2017, <u>http://www.cse.wustl.edu/~jain/talks/cits17.htm</u>
- Raj Jain, "Blockchains: The Revolutionary Trust Protocol," BEL Keynote at 22nd Annual International Conference on Advanced Computing and Communications (ADCOM 2016), Bangaluru, India, Sep 10, 2016, http://www.coe.uustl.edu/~ioin/tolks/blo_ad16.htm Grand Tara

http://www.cse.wustl.edu/~jain/talks/blc_ad16.htm Grand Tara

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

List of Acronyms

- □ ADCOM Advanced Computing
- □ AI Artificial Intelligence
- **CITS** Computer, Information and Telecommunication Systems
- DEC Digital Equipment Corporation
- DNS Domain Name Service
- IBM International Business Machines
- □ IEEE Institution of Electrical and Electronics Engineers
- ICO Initial Coin Offering
- NFV Network Function Virtualization
- PC Personal Computer
- □ SDN Software defined networking
- □ VC Venture Capitalist

Washington University in St. Louis

Scan This to Download These Slides

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/pbc_ibf.htm

©2017 Raj Jain