Optical Networking: Recent Developments, Issues, and Trends

Raj Jain

New Address: Raj Jain, Washington University in Saint Louis, jain@cse.wustl.edu, <u>http://www.cse.wustl.edu/~jain</u>

These slides are available on-line at:

http://www.cis.ohio-state.edu/~jain/talks/opt_ieee.htm

IEEE Distinguished Lecture 2002

- 1. Trends in Networking
- 2. Core Network Issues: DWDM, OEO VS OOO
- 3. Metro Network Issues: Next Gen SONET vs Ethernet with RPR
- 4. Access Networks Issues: Multi-Service Provisioning Platforms

Trend: Back to ILECs

1. CLECs to ILECs

ILEC: Slow, steady, predictable.

CLEC: Aggressive, Need to build up fast

New networks with newest technology

- No legacy issues
- 2. Back to Voice
 - CLECs wanted to *start* with data
 - ILECs want to *migrate* to data

 \Rightarrow Equipment that support voice circuits but allow packet based (hybrids) are more important than those that allow only packet based

- □ 10Mbps Ethernet (10Base-F) uses 850 nm
- □ 100 Mbps Ethernet (100Base-FX) + FDDI use 1310 nm
- □ Some telecommunication lines use 1550 nm
- **WDM:** 850nm + 1310nm or 1310nm + 1550nm
- □ Dense \Rightarrow Closely spaced $\approx 0.1 2$ nm separation
- □ Coarse = 2 to 25 nm = 4 to 12 λ 's
- □ Wide = Different Wavebands

Recent DWDM Records

- **a** $32\lambda \times$ 5 Gbps to 9300 km (1998)
- \Box 16 λ × 10 Gbps to 6000 km (NTT'96)
- $\Box 160\lambda \times 20 \text{ Gbps (NEC'00)}$
- \Box 128 λ × 40 Gbps to 300 km (Alcatel'00)
- □ 64λ × 40 Gbps to 4000 km (Lucent'02)
- □ 19λ× 160 Gbps (NTT'99)
- $\Box \quad 7\lambda \times \ 200 \text{ Gbps (NTT'97)}$
- $\Box \quad 1\lambda \times 1200 \text{ Gbps to } 70 \text{ km using TDM (NTT'00)}$
- □ 1022 Wavelengths on one fiber (Lucent'99)

Potential: 58 THz = 50 Tbps on 10,000 λ 's

Ref: IEEE J. on Selected Topics in Quantum Electronics, 11/2000.

Core Optical Networks

- □ Higher Speed: 10 Gbps to 40 Gbps
- □ Longer Distances: 600 km to 6000 km
- □ More Wavelengths: 16λ 's to 160λ 's
- □ All-optical Switching: OOO vs OEO Switching

Optical Transport Products

Product	λ's	Gb/s	km	Avail-
				ability
Siemens/Optisphere TransXpress	80	40	250	2001
	160	10	250	2001
Alcatel 1640 OADM	160	2.5	2300	2001
	80	10	330	2001
Corvis Optical Network Gateway	160	2.5	3200	2000
	40	10	3200	2000
Ciena Multiwave CoreStream	160	10	1600	2001
Nortel Optera LH4000	56	10	4000	2000
Optera LH 5000	104	40	1200	2002
Sycamore SN10000	160	10	800	2001
	40	10	4000	2001
Cisco ONS 15800	160	10	2000	2002

Befigushereeverything," Telephony, October 16, 2000

OEO vs OOO Switches

• OEO:

- Requires knowing data rate and format, e.g., 10 Gbps SONET
- □ Can multiplex lower rate signals
- \Box Cost/space/power increases linearly with data rate
- 000:
 - Data rate and format independent
 - \Rightarrow Data rate easily upgraded
 - □ Sub-wavelength mux/demux difficult
 - □ Cost/space/power relatively independent of rate
 - □ Can switch multiple ckts per port (waveband)
 - □ Issues: Wavelength conversion, monitoring

Trend: LAN - WAN Convergence E E E S S □ Past: Shared media in LANs. Point to point in WANs. □ Future: No media sharing by multiple stations □ Point-to-point links in LAN and WAN □ No distance limitations due to MAC. Only Phy. Datalink protocols limited to frame formats 10 GbE over 40 km without repeaters Ethernet End-to-end.

□ Ethernet carrier access service:\$1000/mo 100Mbps

SONET

- Synchronous optical network
- Standard for digital optical transmission (bit pipe)
- Developed originally by Bellcore to allow mid-span meet between carriers: MCI and AT&T.
 Standardized by ANSI and then by ITU

 \Rightarrow Synchronous Digital Hierarchy (SDH)

□ You can lease a SONET connection from carriers

SONET Functions

- Protection: Allows redundant Line or paths
- □ Fast Restoration: 50ms using rings
- Sophisticated OAM&P
- □ Ideal for Voice: No queues. Guaranteed delay
- □ Fixed Payload Rates: 51M, 155M, 622M, 2.4G, 9.5G Rates do not match data rates of 10M, 100M, 1G, 10G
- □ Static rates not suitable for bursty traffic
- One Payload per Stream
- **High Cost**

SONET vs Ethernet					
Feature	SONET	Ethernet			
Payload Rates	51M, 155M,	10M, 100M, 1G,			
	622M, 2.4G,	10G			
	9.5G				
Payload Rate	Fixed	√Any			
Granularity					
Bursty Payload	No	√Yes			
Payload Count	One	√Multiple			
Protection	√Ring	Mesh			
OAM&P	√Yes	No			
Synchronous	√Yes	No			
Traffic					
Restoration	$\sqrt{50}$ ms	Minutes			
Cost	High	\sqrt{Low}			
Used in	Telecom	Enterprise			

SONET vs Ethernet: Remedies

Feature	SONET	Ethernet	Remedy
Payload Rates	51M, 155M,	10M, 100M, 1G,	10GE at 9.5G
	622M, 2.4G,	10G	
	9.5G		
Payload Rate	Fixed	√Any	Virtual
Granularity			Concatenation
Bursty Payload	No	$\sqrt{Y}es$	Link Capacity
			Adjustment Scheme
Payload Count	One	√Multiple	Packet GFP
Protection	√Ring	Mesh	Resilient Packet
			Ring (RPR)
OAM&P	√Yes	No	In RPR
Synchronous	√Yes	No	MPLS + RPR
Traffic			
Restoration	$\sqrt{50}$ ms	Minutes	Rapid Spanning Tree
Cost	High	√Low	Converging
Used in	Telecom	Enterprise	

IEEE Distinguished Lecture 2002

- Dual Ring topology
- Supports broadcast and multicast
- \Box Packet based \Rightarrow Continuous bandwidth granularity
- □ Max 256 nodes per ring
- □ MAN distances: Several hundred kilometers.
- Gbps speeds: Up to 10 Gbps

- □ Both rings are used (unlike SONET)
- □ Normal transmission on the shortest path
- ❑ Destination stripping ⇒ Spatial reuse Multicast packets are source stripped
- Five Classes of traffic: Reserved, High-Priority, Medium Priority, Low Priority, Control

Passive Optical Networks (PONs)

- PONs use a single fiber for bi-directional communication compared to four for point-to-point technologies ⇒ Reduced cabling and plant cost
- A single fiber is shared among 16 to 32 customers
 ⇒ Customer bandwidth can change/grow dynamically
 ⇒ Relieves fiber congestion
- Multi-service PONs: Voice, T1/E1, SONET/SDH, ATM, Video, Ethernet
- $\square Passive \Rightarrow More reliable$
- ❑ Useful if customers are clustered
 ⇒ PONs are succeeding in Asia (Korea, China) because of high-rise living/business

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)
- □ Ref: <u>http://www.citynettelecom.com</u>, NFOEC 2001, pp. 331

- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers
- Fast Restoration: Broken sewer pipes replaced with minimal disruption

IEEE Distinguished Lecture 2002

- \Box ILEC vs CLECs \Rightarrow Evolution vs Revolution
- □ Core market is stagnant
 - \Rightarrow No OOO Switching and Long Haul Transport
- ❑ Metro Ethernet ⇒ Ethernet Service vs Transport ⇒ Next-Gen SONET vs Ethernet with RPR
- □ Multi-Service Provisioning Platform (MSPP)

- Detailed references in <u>http://www.cis.ohio-</u> <u>state.edu/~jain/refs/opt_refs.htm</u>
- Recommended books on optical networking, <u>http://www.cis.ohio-state.edu/~jain/refs/opt_book.htm</u>

References

- Optical Networking and DWDM, <u>http://www.cis.ohio-state.edu/~jain/cis788-</u> <u>99/dwdm/index.html</u>
- IP over Optical: A summary of issues, (internet draft) <u>http://www.cis.ohio-state.edu/~jain/ietf/issues.html</u>
- □ Lightreading, <u>http://www.lightreading.com</u>