Optical Networks: Recent Advances, Trends, and Issues

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

These slides are available at:

http://www.cis.ohio-state.edu/~jain/talks/opnet01.htm

Opnetwork 2001, August 29, 2001

- 1. Market Developments
- 2. Hot Issues
- 3. Technology Developments
- 4. Research Topics

Trend: Back to ILECs

1. CLECs to ILECs

ILEC: Slow, steady, predictable.

CLEC: Aggressive, Need to build up fast

New networks with newest technology

No legacy issues

2. Back to Voice

CLECs wanted to *start* with data

ILECs want to *migrate* to data

 \Rightarrow Equipment that support voice circuits but allow packet based (hybrids) are more important than those that allow only packet based

Opnetwork 2001, August 29, 2001

- 1. Bandwidth Glut vs Traffic Growth
- 2. OOO vs OEO
- 3. Ethernet vs SONET
- 4. Mesh vs Ring

Is Internet Growing?

IP Traffic Growth will slow down from 200-300% per year to 60% by 2005

- McKinsey & Co and JP Morgan, May 16, 2001

- 98% of fiber is unlit WSJ, New York Times, Forbes (Fiber is a small fraction of cost. Laying is expensive.)
- □ Nortel blamed sales decline on falling IP traffic
- Carriers are using only avg 2.7% of their total *lit* fiber capacity - Michael Ching, Marril Lynch & Co. in Wall Street Journal

Opnetwork 2001, August 29, 2001

Internet Growth (Cont)

- Demand on 14 of 22 most used routes exceeds 70%
 -Telechoice, July 19, 2001
- Traffic grew by a factor of 4 between April 2000-April 2001
 -Larry Roberts, August 15, 2001

Opnetwork 2001, August 29, 2001

OEO vs OOO

Feature	OEO	000
Data Format	No	$\sqrt{\text{Yes}}$
Independence		
Cost/Space/Power	No	$\sqrt{\text{Yes}}$
independent of rate		
Upgradeability to	No	$\sqrt{\text{Yes}}$
higher rate		
Sub-Wavelength	$\sqrt{\text{Yes}}$	Future
Switching		
Waveband Switching	No	$\sqrt{\text{Yes}}$
Performance	$\sqrt{\mathbf{Bit}}$ error rate	Optical signal
Monitoring		degradation
Wavelength Conversion	√ Built-in	1+ year away

Opnetwork 2001, August 29, 2001

Raj Jain

NAY

Networks

10 G Ethernet

- □ Two versions: LAN (10 Gbps), WAN (9.5 Gbps)
- □ Point-to-point full duplex only
- Several different physical layer designs for different distances
- 9.5 Gbps WAN version compatible with SONET in data rate but incompatible in clock jitter
- Forty companies formed Metro Ethernet Forum formed to accelerate Ethernet in Metro.
 www.metroethernetforum.org

Opnetwork 2001, August 29, 2001

Feature	SONET	Ethernet
Bit Rate (bps)	155 M, 622 M, 2.5 G,	1M, 10 M, 100 M, 1 G
	10 G, 40 G,	10 G,
Timing	Isochronous	Plesio-Isochronous
	(Periodic 125 _µ s)	
Multiplexing	Bit	Packet
Clocks	Common	Independent
Clock jitter	4.6 to 20 ppm	100 ppm (May change)
Usage	Telecom	Enterprise
Volume	Millions	100's of Millions
Price (10 Gbps)	>10k	≈1k
Recovery	50 ms	Few Minutes
Topology	Rings	Mesh

Ethernet: Future Possibilities

- **40** Gbps
- **1**00 Gbps:
 - \circ 16 λ × 6.25 Gbps
 - $8\lambda \times 12.5$ Gbps
 - $4\lambda \times 12.5$ using PAM-5
- **1**60 Gbps
- □ 1 Tbps:
 - \circ 12 fibers with $16\lambda \times 6.25$ Gbps
 - 12 fibers with $8\lambda \times 12.5$ Gbps

□ 70% of 802.3ae members voted to start 40G in 2002

Opnetwork 2001, August 29, 2001

- □ On rings: All links same capacity ⇒ Not good for non-homogeneous or long-distance traffic
- Upgrade: All stations on the ring must be upgraded.
- Mesh typically requires 50% less restoration and 50% less working capacity than rings
- Mesh save more as degree of connectivity increases

- Dual Counter-rotating rings help protect against failure
- □ Used in SONET and FDDI
- Need to bring these concepts to Ethernet and IP

New Developments

- 1. New Applications: Storage, VPN, LAN extension, Data hosting
- 2. Higher Speed: 40 Gbps
- 3. More Wavelengths per fiber
- 4. Longer Distances
- 5. Larger Crossconnects
- 6. Newer places to install fibers

Opnetwork 2001, August 29, 2001

Multiservice switches allow IP, ATM, Sonet, ESCON, ...

Opnetwork 2001, August 29, 2001

More Wavelengths

- □ C-Band (1535-1560nm), 1.6 nm (200 GHz) \Rightarrow 16 λ 's
- □ Three ways to increase # of wavelengths:
- Narrower Spacing: 100, 50, 25, 12.5 GHz
 Spacing limited by data rate. Cross-talk (FWM)
 Tight frequency management: Wavelength monitors, lockers, adaptive filters
- 2. Multi-band: C+L+S Band
- 3. Polarization Muxing

More Wavelengths (Cont)

- $\square More wavelengths \Rightarrow More Power$
 - \Rightarrow Fibers with large effective area
 - \Rightarrow Tighter control of non-linearity's
 - \Rightarrow Adaptive tracking and reduction of polarization mode dispersion (PMD)

Opnetwork 2001, August 29, 2001

Ultra-Long Haul Transmission

- Strong out-of-band Forward Error Correction (FEC) Changes regeneration interval from 80 km to 300km Increases bit rate from 40 to 43 Gbps
- 2. Dispersion Management: Adaptive compensation
- 3. More Power: Non-linearity's ⇒ RZ coding Fiber with large effective area Adaptive PMD compensation
- 4. Distributed Raman Amplification: Less Noise than EDFA
- 5. Noise resistant coding: 3 Hz/bit by Optimight

Opnetwork 2001, August 29, 2001

Trend: Large Port Count

Increasing traffic

 \Rightarrow Increase number of ports or

- increase speed per port
- Increasing the port speed increases the number of muxing/demuxing (grooming) points Increases # of hops.
- Trend: Number of hops is decreasing (Avg 1.8)
 ⇒ Larger number of ports per router
 E.g., Avici
- □ Also, larger # of wavelengths per fiber

Opnetwork 2001, August 29, 2001

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)
- Ref: http://www.citynettelecom.com, NFOEC 2001, pp. 331NAYNAOpnetwork 2001, August 29, 2001Raj Jain

- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers
- Fast Restoration: Broken sewer pipes replaced with
 - minimal disruption

- □ Find path through interconnection of ring networks
- □ Find best alternate path for protection
- □ Find shared protection paths
- □ Identify rings in a mesh networks
- □ Routing in all-optical networks: Non-linearity's

- 2. Traffic growth \Rightarrow New developments in 40Gbps optics, ultra-long haul, and more wavelengths
- 3. Traffic is increasing faster than Moore's law ⇒ Optical Switching
- 4. Routers and crossconnects with larger number of ports are more cost effective.

- Detailed references in <u>http://www.cis.ohio-</u> <u>state.edu/~jain/refs/opt_refs.htm</u>
- Recommended books on optical networking, <u>http://www.cis.ohio-state.edu/~jain/refs/opt_book.htm</u>

References

- Optical Networking and DWDM, <u>http://www.cis.ohio-state.edu/~jain/cis788-</u> <u>99/dwdm/index.html</u>
- IP over Optical: A summary of issues, (internet draft) <u>http://www.cis.ohio-state.edu/~jain/ietf/issues.html</u>
- Lightreading, <u>http://www.lightreading.com</u>

Opnetwork 2001, August 29, 2001

Standards Organizations

- □ IETF: <u>www.ietf.org</u>
 - Multiprotocol Label Switching (MPLS)
 - IP over Optical (IPO)
 - Traffic Engineering (TE)
 - Common Control and Management Plane (CCAMP)
- Optical Internetworking Forum (OIF): <u>www.oiforum.com</u>
- □ ANSI T1X1.5: <u>http://www.t1.org/t1x1/_x15-hm.htm</u>
- ITU, <u>www.itu.ch</u>, Study Group 15 Question 14 and Question 12
- Optical Domain Service Interface (ODSI)

Completed December 2000

Opnetwork 2001, August 29, 2001