Broadband Access: Issues and Trends

Professor Washington University St. Louis, MO 63130 Co-Founder and CTO Nayna Networks, Inc. San Jose, CA 95134

Optical Transmission Systems and Equipment for WDM Networking IV Conference 6012, Optics East 2005, Boston, October 24-26, 2005

These Slides are available at

http:/www.cse.wustl.edu/~jain/talks/oe05.htm

Optics East 2005

- 1. Top 10 Networking Developments of 2004-05
- 2. Access Networks
- 3. GPON vs EPON
- 4. Access Related Technologies
- 5. Mobility and Wireless Access

Optics East 2005

Top 10 Networking Developments of 2004-05

- 1. Security is most important: All packets go through deep inspections \Rightarrow Throughput limited by packet inspection, Firewalls, Spam filters
- 2. Wireless (WiFi) is spreading (Intel Centrino)
- 3. More Cell phones than POTS. Smart Cell phones w PDA, email, video, images \Rightarrow Mobility
- 4. Broadband Access is growing faster than cell phones Fiber is creeping towards home
- 5. Ethernet extending from Enterprise to Access to Metro ...
- 6. Wiring more expensive than equipment \Rightarrow Wireless Access
- 7. Voice over Internet Protocol (VOIP) is in the Mainstream
- 8. Multi-service IP: Voice, Video, and Data
- 9. Terabyte/Petabyte storage (Not VoD) \Rightarrow High-Speed Networking
- 10. Internet is less about communication and more for information retrieval

Optics East 2005

Access Networks

- □ 63.84 M DSL subscribers worldwide. 2003 growth rate of 77.8% is more than the peak growth rate of cellular phones.
- By Q3'04, 19M Cable Modems, 12M DSL in USA [Leichtman Research]
- All countries are racing to a leadership position in broadband
- □ Digital-Divide \Rightarrow 30M subs@10Mbps, 10M@100Mbps in Japan by 2005
- □ Telecom epicenter has moved from NA+Europe to Asia Pacific

Rank	Country	DSL per	Rank	Country	DSL per	
		100 Phones			100 Phones	
1	South Korea	28.3	6	Israel	14.5	
2	Taiwan	19.8	7	Denmark	14.2	
3	Belgium	16.7	8	Finland	13.6	
4	Hong Kong	16.1	9	Singapore	13.4	
5	Japan	15.7	10	France	12.1	
	_		32	USA	5.6	

GPON vs EPON

GPON	EPON				
ATM-based	Ethernet Based				
10% Cell Tax \Rightarrow 1 Gbps payload	No segmentation overhead				
Legacy	New trend				
US RBOCs	US Munis + Asia + Europe				
US 10 th in Broadband penetration	Asia and Europe are broadband leaders				
RBOCs already selected suppliers	Large potential market				
ATM Switches Expensive	Ethernet Switches Cheap				
Components relatively expensive.	Other components also high volume.				
ITU design \Rightarrow Expensive Optics	IEEE Design \Rightarrow Cheap Optics				
Re-conversion when connecting to IP	Native mode IP connection				
backbone					
Can connect to SONET backbone	Can connect to SONET backbone				
ATM non-existant in Enterprise Networks	Compatible with Enterprise Networks				
T1/T3 supported	T1/T3 supported				
ATM DSLAM easier to connect	Most DSLAM also have Ethernet or				
	T1/T3 uplinks				
ATM personnel difficult to find	Easier to maintain				
Washington	NAYNA				
WASHINGTON UNIVERSITY IN ST LOUIS Optics East 2005	©2005 Raj Jain Networks				

marketplace and supportive government policies, broadband service in Japan is the cheapest in the world, at 18¢ per 100 kbits/sec (compared to \$2.86 in the United States and \$7.18 in the United Kingdom). Japanese subscribers are adopting FTTH at a rate of 80,000-90,000 subscribers per month. So what's next for Japan? And what can U.S. providers learn from Japan's aggressive FTTH deployment plans?

PON Deployments

- □ Lead by Japan, Korea, Taiwan, ...
- Apartment complexes
- Municipal Projects: Traffic monitoring, railroad communications
- Carriers: Yahoo BB, NTT, KDDI, CHT,
- Community Networks: 800 communities
- □ FTTN by SBC and Verizon

Optics East 2005

Ethernet in the Access

U.S. MAN/WAN Ethernet services revenue

WASHINGTON UNIVERSITY IN ST-1 OUIS

 U.S. MAN/WAN Ethernet services revenues as a percentage of total FR/ATM/PL

> FR - Frame Relay PL - Private line

Source: The Yankee Group, 2004

- Ethernet service revenues are cutting into Frame Relay, ATM, and private line revenues
- Ethernet revenues are \$580M in 2004 and will reach 8.9% of the FR/ATM/PL revenues
 Washington

Enterprise vs Carrier Ethernet

Enterprise

- Distance: up to 2km
- □ Scale:
 - Few K MAC addresses4096 VLANs
- Protection: Spanning tree
- Path determined by spanning tree
- □ Simple service
- $\Box Priority \Rightarrow Aggregate QoS$
- No performance/Error monitoring (OAM)

Carrier

- **Up** to 100 km
- Millions of MAC Addresses
- Millions of VLANs Q-in-Q
- Rapid spanning tree (Gives 1s, need 50ms)
- **Traffic engineered path**
- □ SLA. Rate Control.
- □ Need per-flow QoS
- □ Need performance/BER

No 100 Mbps Ethernet switches with Q-in-Q, Rate control, Priority

Optics East 2005

Access Related Technologies

- Home networks are reaching Gbps but over Cat-5/6
 Video interconnection via wireless USB or UWB
- Need multi-service (multi-LAN, Multy-WAN) residential gateways
- More money in applications than transport

Optics East 2005

Mobility

- 1.35 Billion mobile subscribers vs 1.2 Billion Fixed line subscribers at the end of 2003 [ITU]
- Number of wired phones in USA is declining for the first time since the Great Depression.
- 20% of world population is mobile. Need internet access.
 70% of internet users in Japan have mobile access
- □ Vehicular mobility up to 250 Km/h (IEEE 802.20)

Telecom Revenue

	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

□ Long distance is disappearing.

- □ Most of the revenues are going to be from wireless.
- Source: Instat/MDR (Business Week, Feb 28, 2005)

Optics East 2005

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)

- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers

Fast Restoration: Broken sewer pipes replaced with minimal disruption

Optics East 2005

- Access is where the action is. Core is cool. Metro is warm. Access is hot.
- 2. Telecom epicenter has moved from NA+Europe to Asia Pacific
- FTTP is happening.
 FTTH in Japan and Korea, FTTN in USA.
- 4. EPON is winning vs GPON
- 5. Most of the telecom revenue and growth is in wireless

Optics East 2005

Networking Trends: References

- References on Networking Trends, <u>http://www.cse.ohio-state.edu/~jain/refs/ref_trnd.htm</u>
- References on Optical Networking, <u>http://www.cse.ohio-state.edu/~jain/refs/opt_refs.htm</u>
- References on Residential Broadband, <u>http://www.cse.ohio-state.edu/~jain/refs/rbb_refs.htm</u>
- References on Wireless Networking, <u>http://www.cse.ohio-state.edu/~jain/refs/wir_refs.htm</u>

