Current Trends in Internet Evolution and a Framework for Application Delivery

Washington University in Saint Louis Saint Louis, MO 63130 <u>Jain@wustl.edu</u>

Hitachi Distinguished Lecture at University of Oklahoma, Norman, OK, February 17, 2012

These slides and audio/video recordings of this talk are available on-line at:

http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm</u>

©2012 Raj Jain

- 1. Current trends in networking
- 2. Our research on next generation: open ADN
- 3. Software Defined Networks

Why to worry about Future Internet?

Billion dollar question!

Washington University in St. Louis

2012: Where are we now?

□ At the knee of Mobile Internet age (paradigm shift)

- > Computing (IBM 360) \Rightarrow Mini-computing (PDP11)
 - \Rightarrow Personal Computing (Desktop, PC+MAC) \Rightarrow Laptops
 - \Rightarrow Netbooks \Rightarrow Smart Phones + Tablets
- Most valued companies in the stock market are generally those that lead the paradigm shift
 - > Automotive (General Motors) ⇒ Electrical (GE, Edison Electric) ⇒ Networking (Cisco + 3Com in 80's) ⇒ Internet (Netscape + Yahoo in 90's) ⇒ Mobile Internet (Apple +MS+ Google, 2010's)

□ Note: Apple \neq PC (MAC) company (mobile device company)

- Google ≠ search engine (mobile device company)
- □ Also Social Networking (Facebook), Internet Retail (Amazon)

Washington University in St. Louis

5 Future Predictors

- 1. Miniaturization: Campus \Rightarrow Datacenter \Rightarrow Desktop \Rightarrow Laptop \Rightarrow Pocket \Rightarrow Multi-functional Pocket device
- 2. Mobility: Static \Rightarrow Mobile (1 km/hr) \Rightarrow Mobile (100 km/hr) \Rightarrow Mobile (600 km/hr)
- 3. Distance: PAN (5m) \Rightarrow LAN (500 m) \Rightarrow MAN (50 km) \Rightarrow WAN (500 km)
- 4. Applications: Defense \Rightarrow Industry \Rightarrow Personal
- 5. Social Needs: Energy, Environment, Health, Security
- Broadening and Aggregation: Research ⇒ Many Solutions ⇒ One Standard ⇒ General Public adoption, e.g., Ethernet
- Non-Linearity: Progress is not linear. It is exponential and bursty.
 Most predictions are linear ⇒ underestimates.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm

We are

here

Trend: Moore's Law

- Computing Hardware is cheap
- Memory is plenty
- \Rightarrow Storage and computing (Intelligence) in the net

Trend: Multihoming + Mobility

- Centralized storage of info
- □ Anytime Anywhere computing
- Dynamically changing Locator
- User/Data/Host/Site/AS Multihoming
- User/Data/Host/Site Mobility
- ⇒ ID/Locator Split

2G

3G

WiFi

Bluetooth

Mobile Telephony already distinguishes ID vs. Locator We need to bring this technology to IP.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm

©2012 Raj Jain

Networks need to support efficient service setup and delivery

Ref: Top 500 sites on the web, http://www.alexa.com/topsites Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm</u>

©2012 Raj Jain

Private Smart WANs

□ Services totally avoid the Internet core \Rightarrow Many private WANs

□ Google WAN, Akamai \Rightarrow Rules about how to connect users

Ten Key Features that Services Need

- 1. **Replication**: Multiple datacenters appear as one
- 2. Fault Tolerance: Connect to B if A is down
- **3.** Load Balancing: 50% to A, 50% to B
- 4. Traffic Engineering: 80% on Path A, 20% on Path B
- **5.** Flow based forwarding: Movies, Storage Backup, ... ATMoMPLS, TDMoMPLS, FRoMPLS, EoMPLS, ... Packets in Access, Flows in Core
- 6. Security: Provenance, Authentication, Privacy, ...
- 7. User Mobility: Gaming/Video/... should not stop as the user moves
- **8.** Service composition: Services using other services
- **9.** Customization: Every service has different needs
- **10. Dynamic Setup** \Rightarrow Networking as a Service

Washington University in St. Louis

Networking: Failures vs Successes

- □ 1986: MAP/TOP (vs Ethernet)
- □ 1988: OSI (vs TCP/IP)
- □ 1991: DQDB
- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: ATM Switches (vs IP routers)
- □ 1998: MPOA (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)
- □ 2003: HomeRF (vs WiFi)
- □ 2007: Resilient Packet Ring (vs Carrier Ethernet)
- □ IntServ, DiffServ, ...

Technology alone does not mean success.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm

llean

Sla

Key Features of openADN

1. Edge devices only.

Core network can be current TCP/IP based or future SDN based

- 2. Coexistence (Backward compatibility) Old on New. New on Old
- 3. Incremental Deployment
- 4. Economic Incentive for first adopters

Most versions of Ethernet followed these principles. Many versions of IP did not.

The Narrow Waist

- Everything as a service over service delivery narrow waist
- □ IP, HTTP, Content, Service delivery, ...

Trend: Separation of Control and Data Planes

- □ Control = Prepare forwarding table
- Data Plane: Forward using the table
- Forwarding table is prepared by a central controller
- Protocol between the controller and the forwarding element: OpenFlow
- Centralized control of policies
- Switches are simple.
 Controller can be complex Can use powerful CPUs
- Lots of cheap switches
 = Good for large datacenters

 Ref: [MCK08] ``OpenFlow: Enabling Innovation in Campus Networks," OpenFlow Whitepaper, March 2008

 <u>http://www.openflow.org/documents/openflow-wp-latest.pdf</u>

 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm</u>

 ©2012 Raj Jain

OpenFlow (Cont)

□ Three Components:

- > Flow table: How to identify and process a flow
- Secure Channel: Between controller and the switch
- > Open Flow Protocol: Standard way for a controller to communicate with a switch

OpenFlow (Cont)

- Controller forwards the packets correctly as the mobile clients move
- Reference designs for Linux, Access points (OpenWRT), and NetFPGA (hardware)
- Allows both proactive (flow tables loaded before hand) and reactive (Flow entries loaded on demand)
- □ Allows wild card entries for aggregated flows
- Multiple controllers to avoid single point of failure: Rule Partitioning, Authority Partitioning
- Open Networking Foundation announced Open Switch Specification V1.2 on Jan 29, 2012: Includes IPv6 and experimenter extensions.

Ref: [MCK08], OpenFlow.org, OpenNetworking.org

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/ngi_ou.htm

Trend: Software Defined Networks

- □ Problem: Multiple tenants in the datacenter
- Solution: Use multiple controllers. Each tenant can enforce its policies

Washington University in St. Louis

□ Significant industry interest ⇒ Open Networking Foundation, <u>https://www.opennetworking.org/</u>

Problem: Complex Routers

- □ The routers are expensive because there is no standard implementation.
- Every vendor has its own hardware, operating/ management system, and proprietary protocol implementations.
- Similar to Mainframe era computers.
 No cross platform operating systems (e.g., Windows) or cross platform applications (java programs).

Solution: Divide, Simplify and Standardize

- Computing became cheaper because of clear division of hardware, operating system, and application boundaries with well defined APIs between them
- □ Virtualization \Rightarrow simple management + multi-tenant isolation

SDN Impact

□ Why so much industry interest?

- > Commodity hardware
 - \Rightarrow Lots of cheap forwarding engines \Rightarrow Low cost
- > Programmability \Rightarrow Customization
- > Sharing with Isolation \Rightarrow Networking utility
- > Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly
- Opens up ways for new innovations
 - Dynamic topology control: Turn switches on/off depending upon the load and traffic locality
 - \Rightarrow "Energy proportional networking"

Washington University in St. Louis

Summary

- 1. Peak of **mobile internet** paradigm shift
- 2. Miniaturization, Mobility, Distance, Applications, Social needs help predict the future
- 3. Profusion of **multi cloud-based applications** on the Internet. Application services need replication, fault tolerance, traffic engineering, security, ...
- 4. **OpenADN** provides these features in a multi-cloud environment with backward compatibility, incremental deployment
- 5. Trend is towards simplifying and standardizing router interfaces \Rightarrow Software defined networking

Application Delivery: Opportunity for ISP's

Washington University in St. Louis