Recent Advances in 100 Mbps LAN Technologies

Raj Jain

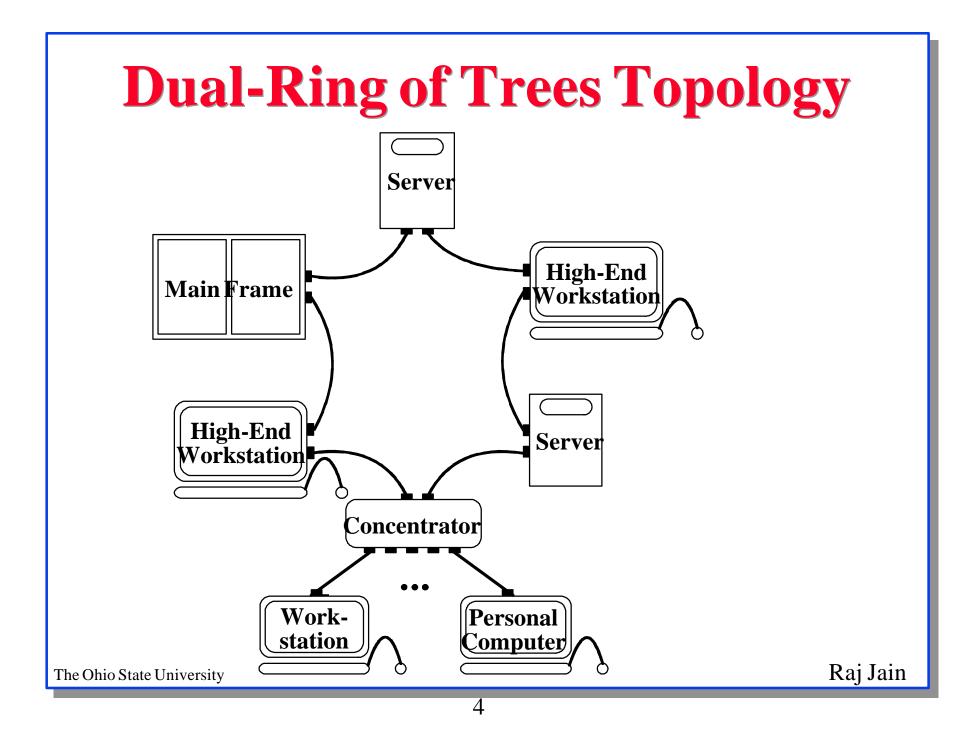
Professor of Computer and Information Sciences

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Raj Jain

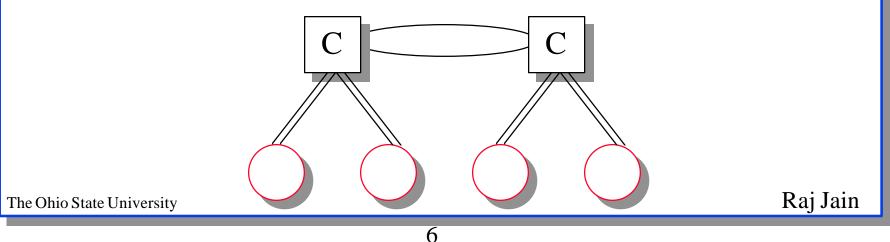

- □ FDDI, Copper FDDI
- □ 10 Mbps Ethernet
- □ IEEE 802.3 Notation: 10BASE5
- □ Repeater, hub, bridge, router
- □ 100 Mbps Ethernet
- □ 100VG-AnyLAN
- Switched, full duplex LANs, Virtual LANs

FDDI

- Fiber Distributed Data Interface
- □ ANSI Standard for 100 Mbps over Fiber and twisted pair
- Timed token access
- Up to 500 stations on a single FDDI network
- □ Inter-node links of up to 2km on multimode fiber, 60+ km on single mode fiber, Longer SONET links, 100 m on UTP.
- □ Round-trip signal path limited to $200 \text{ km} \Rightarrow 100 \text{ km}$ cable.
- □ Maximum frame size is 4500 bytes.
- Eight priority levels
- Synchronous (guaranteed access delay) and asynchronous traffic
- Arranged as single- or dual-ring logical topology

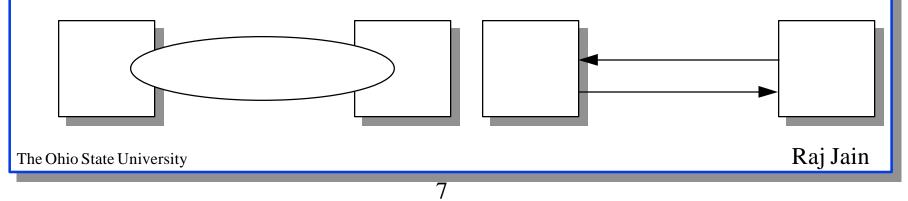
The Ohio State University

Raj Jain



<u>Timed</u> Token Access

- □ Two classes of traffic: Synchronous, Asynchronous
- Asynchronous: Timed token access
- □ Stations agree on a target token rotation time (TTRT)
- □ Stations monitor token rotation time (TRT)
- A station can transmit TTRT-TRT =Token Holding Time (THT)
- Complete the frame if THT expires in the middle of a frame
- **Release the token at the end of frame transmission**
- □ If TRT>TTRT, Increment late count (LC)
- **\Box** Reinitialize the ring if LC = 2
- Synchronous: ith station can transmit SAi (pre-allocated)


TP-PMD

- Twisted-Pair Physical Media Dependent
 = Copper FDDI or CDDI
- □ Allows 100 m over Cat-5 unshielded twisted pair (UTP)
 - □ Cat-3: 15 MHz Voice grade
 - **Cat-4**: 20 MHz
 - □ Cat-5: 100 MHz data grade
- □ Uses scrambling and 3-level encoding

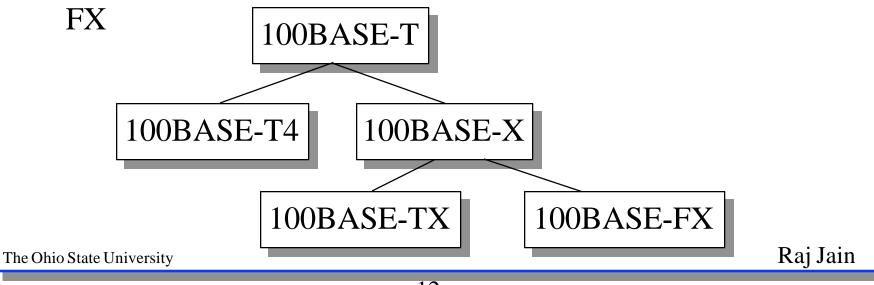
Full Duplex FDDI

- □ The stations transmit and receive simultaneously.
- □ Works only on a 2-station ring.
- **2**00 Mbps.
- □ Network starts in ring mode.
- □ After detecting a two node ring using SMT frames, the stations negotiate and enter full duplex mode
- On error, stations enter the ring mode.
- □ Patented and licensed by Digital.

CSMA/CD

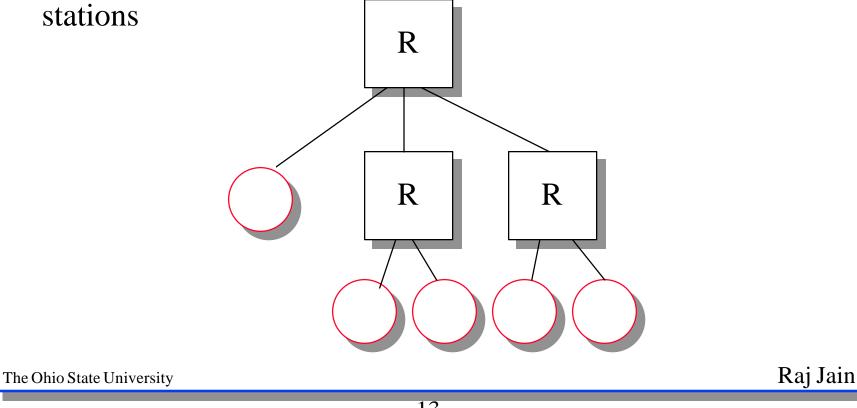
- Aloha at University of Hawaii: Transmit whenever you like Worst case utilization = 1/(2e) =18%
- □ Slotted Aloha: Fixed size transmission slots Worst case utilization = 1/e = 37%
- CSMA: Carrier Sense Multiple Access Listen before you transmit
- CSMA/CD: CSMA with Collision Detection
 Listen while transmitting. Stop if you hear someone else

Ethernet Media Access Protocol


- □ If the medium is idle, transmit
- □ If the medium is busy, wait until idle and then transmit immediately.
- □ If a collision is detected while transmitting,
 - □ Transmit a jam signal for one slot (= 51.2 μ s = 64 byte times)
 - □ Wait for a random time and reattempt (up to 16 times)
 - $\Box \text{ Random time} = \text{Uniform}[0, 2^{\max(k, 10)}] \text{ slots}$
- □ Collision detected by monitoring the voltage High voltage \Rightarrow two or more transmitters \Rightarrow Collision \Rightarrow Length of the cable is limited to 2.5 km

CSMA/CD PHY Standards

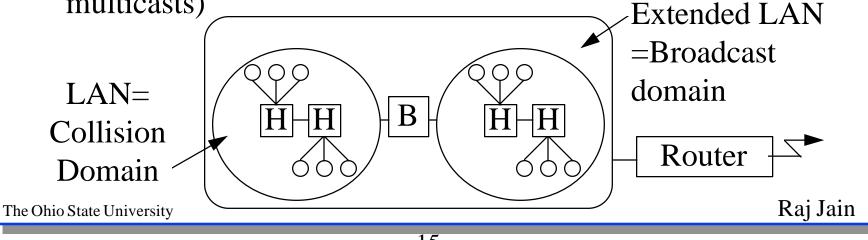
- **10BASE5:** 10 Mb/s over coaxial cable (ThickWire)
- 10BROAD36: 10 Mb/s over broadband cable, 3600 m max segments
- **1BASE5:** 1 Mb/s over 2 pairs of UTP
- **10BASE2:** 10 Mb/s over thin RG58 coaxial cable (ThinWire), 185 m max segments
- **10BASE-T:** 10 Mb/s over 2 pairs of UTP
- **10BASE-FL:** 10 Mb/s fiber optic point-to-point link
- **10BASE-FB:** 10 Mb/s fiber optic backbone (between repeaters). Also, known as synchronous Ethernet.
- 10BASE-FP: 10 Mb/s fiber optic passive star + segments
 10BASE-F: 10BASE-FL, 10BASE-FB, or 10BASE-FP

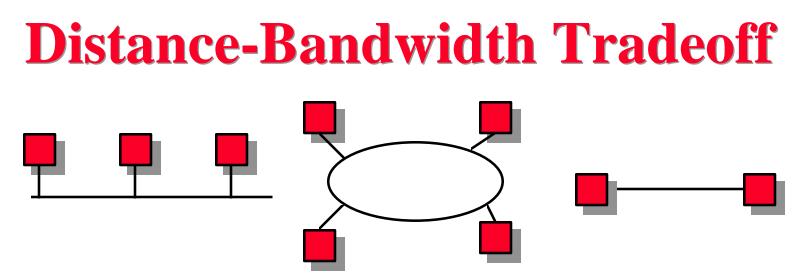

Fast Ethernet Standards

- **100BASE-T4:** 100 Mb/s over 4 pairs of CAT-3, 4, 5 UTP
- **100BASE-TX:** 100 Mb/s over 2 pairs of CAT-5 UTP or STP
- **100BASE-FX:** 100 Mbps CSMA/CD over 2 optical fiber
- **100BASE-X:** 100BASE-TX or 100BASE-FX
- **100BASE-T:** 100BASE-T4, 100BASE-TX, or 100BASE-

10BASE-T

- □ Collision detected by the hub.
- Activity on two or more channels \Rightarrow Collision Collision presence (CP) transmitted by hub to all stations Collision window = 2X One-way delay between farthest

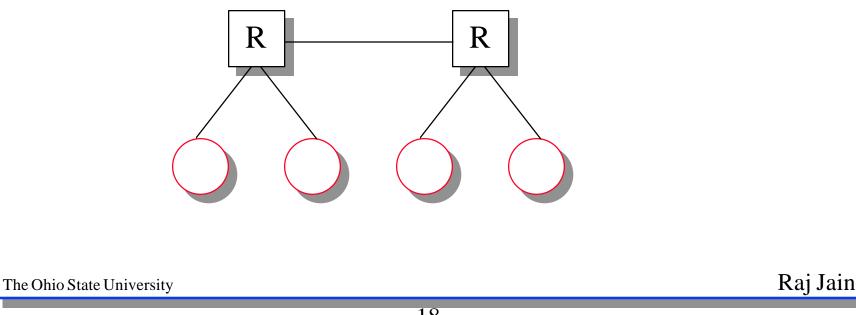



Hub Functions

- □ Signal Restoration (timing and amplitude)
- Data forwarding
- Collision detection (by monitoring receive ports)
- □ Jam signal propagation to all ports
- □ Fault detection and recover: autopartition and restore

Interconnection Devices

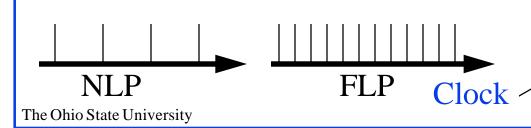
- **Repeater**: PHY device that restores data and collision signals
- □ **Hub:** Multiport repeater + collision detection, notification and signal broadcast
- Bridge: Datalink layer device connecting two or more collision domains
- Router: Network layer device (does propagate MAC multicasts)
 Extended



- Efficiency = Maximum throughput/Media bandwidth
- \Box Efficiency is a decreasing function of α
 - = Propagation delay /Transmission time
 - = (Distance/Speed of light)/(Transmission size/Bits/sec)
 - = Distance × Bits/sec/(Speed of light)(Transmission size)
- □ Bit rate-distance-transmission size tradeoff.
- Options for 100 Mbps: Change the protocol, Increase the min/max frame size by 10, decrease the distance by 10 The Ohio State University
 Raj Jain

Fast Ethernet

- □ Same access method (CSMA/CD) as in Ethernet
- □ Same frame sizes (64 B to 1518 B) as in Ethernet
- **Ten times faster. Ten times shorter.**
- □ Extent = 2.5 km (10 Mbps) 205 m (100 Mbps)

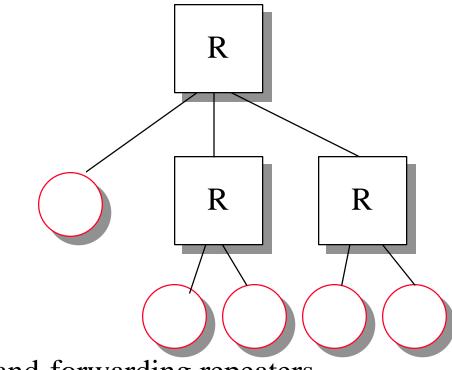

Ethernet vs Fast Ethernet

	Ethernet	Fast Ethernet
Speed	10 Mbps	100 Mbps
MAC	CSMA/CD	CSMA/CD
Network Diameter	2.5 km	205 m
Topology	Bus, Star	Star
Cable	Coax, UTP, Fiber	UTP, Fiber
Standard	802.3	802.3
Cost	X	2X

Autonegotiation: Nway Protocol

- Allows selection of 10 Mbps, 100 Mbps, full duplex modes
- Modified 10BASE-T link integrity pulse test
- Integrity test allowed devices to advertise abilities and ack common modes of operation
- On power-on transmit a burst of 10BASE-T pulses containing "link codeword"
- □ Normal link pulse (NLP) \Rightarrow 10BASE-T
- □ Fast link pulse (FLP) \Rightarrow 100BASE-T

Priority Order: 100BASE-TX Full Duplex, 100BASE-T4, 100BASE-TX, 10BASE-T Full Duplex, 10BASE-T



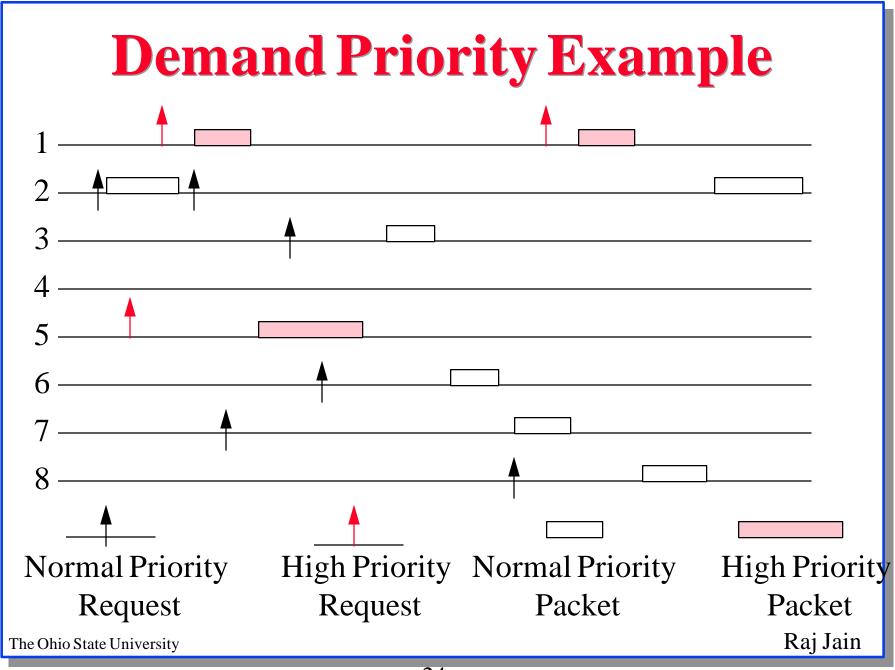
FLP Burst

Raj Jain

100VG-AnyLAN: Key Features

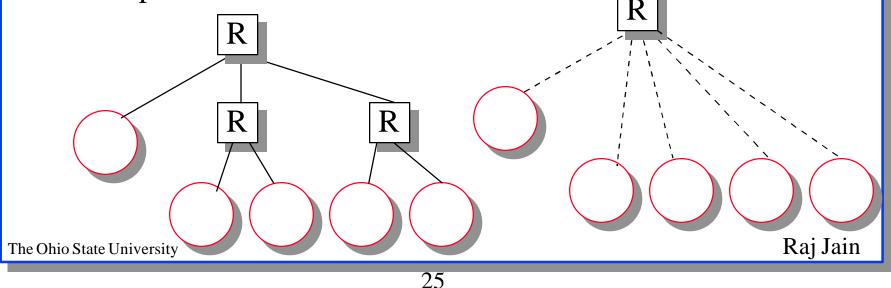
- □ IEEE 802.12 standard. Also known as 100BASE-VG.
- **AnyLAN**:
 - \Rightarrow Supports both Ethernet and token ring frame formats
 - □ Only one format in any LAN
 - □ Allows 10BASE-T and Token ring wiring infrastructure
 - □ 2.5 km network diameter
 - □ Can use LLC Type 1 or 2
 - □ Allows little-endian and big-endian bit order
 - \Rightarrow Simple speed-matching bridges
- $\Box Priorities: Normal and High \Rightarrow Multimedia$
 - Multi-level Configuration

- Store-and-forwarding repeaters.
 Repeaters monitor destination address.
- **Privacy**: Unicast packets not delivered to other end-nodes.
- All repeaters and promiscuous nodes hear all traffic.
- □ End-nodes can be in private mode or promiscuous mode
- Uses centralized "demand priority protocol"

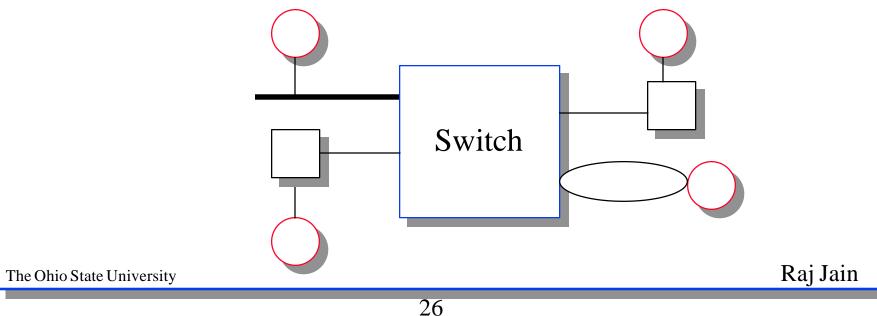

Demand Priority Protocol

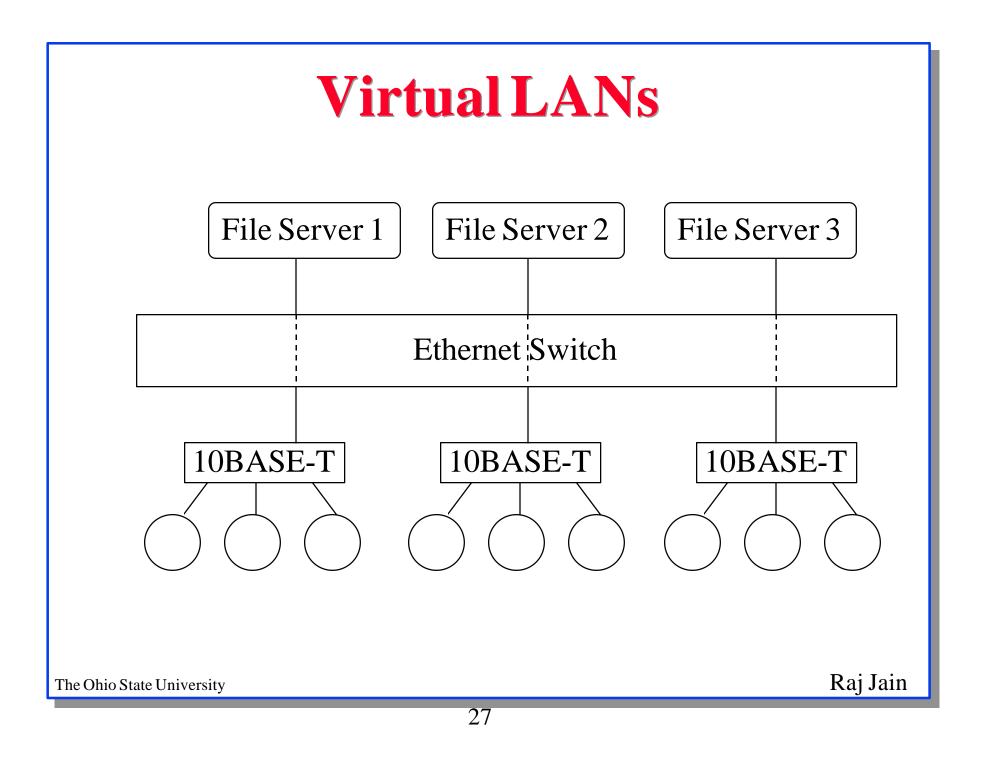
R

- Round-robin in physical port order. One packet per grant
- **Two Priorities: Normal and High**
 - □ Higher priority requests preempt normal priority *round*
 - Higher priority requests served after current normal priority packet *finishes*. No preemption.
 - □ After 200ms to 300 ms, normal priority request becomes higher priority. No starvation.


□ Repeaters remember the next-node to poll

The Ohio State University


Cascaded Networks


- □ Repeaters send request upwards.
- Root grants requests to repeaters.
- **Repeater keeps privilege for one round-robin cycle.**
- □ Network acts like a large single-repeater network.
- □ Packets to attached nodes are sent directly to that node.
- All packets are always forwarded to all other repeaters and to all promiscuous nodes.

Switched LANs

- □ LANs connected to a switch
- Switch = Multiport bridge
- Many simultaneous flows possible
- □ 10 Mbps dedicated per node possible.
- **20** Mbps dedicated possible with full-duplex links
- Virtual LANs possible

LANs: Summary					
	100VG-	100BASE	100BASE	TP-PMD	10BASE-
	AnyLAN	-T4	-TX		Τ
Cat-5	200	100	100	190	100+
Links					
Network	2,000m	250m	250m	N/A	2,500m
Diameter					
Cat-3	100m	100m	Not	Not	100m
Links			supported	supported	
# of pairs	4 (2 on	4	2	2	2,4
	STP)				
10/100	Yes	Yes	Yes	N/A	N/A
support					
Cost	1.5X	1.5X	1.5X	5X	Х
Standard	802.12	802.3u	802.3u	TP-PMD	802.3i
The Ohio State Unive	ersity				Raj Jain

Acronyms

- □ AUI Attachment Unit Interface
- □ Cat-3 Category 3 Cable
- □ Cat-4 Category 4 Cable
- □ Cat-5 Category 5 Cable
- **CRC** Cyclic Redundancy Check
- **DTE** Data Terminal Equipment
- **G** FCS Frame Check Sequence
- **G** FDDI Fiber Distributed Data Interface
- **FEXT** Far-end Crosstalk
- **FIFO** First-in first out
 - FOIRL Fiber Optic Inter-Repeater Link

The Ohio State University

Raj Jain

□ FLP	Fast Link Pulse
G FOMAU	Fiber Optic Medium Attachment Unit
FOMDI	Fiber Optic Media Dependent Interface
FOPMA	Fiber Optic Physical Medium Attachment
□ HH	Header Hub
🗅 IH	Intermediate Hub
□ IPG	Inter-packet Gap
🗅 IRL	Inter-Repeater Link
🗅 LAN	Local Area Network
LLC	Logical Link Control
□ MAC	Medium Access Control
D MAU	Medium Attachment Unit
D MDI	Medium Dependent Interface

The Ohio State University

I MIB	Management Interface Base
MII	Media independent interface
NEXT	Near-end Crosstalk
□ NLP	Normal Link Pulse
NRZI	Non-return to Zero and invert on ones
D PCS	Physical Coding sublayer
D PHY	Physical Layer Device Sublayer
D PLS	Physical signaling sublayer
D PMA	Physical Medium Attachment
DMD	Physical Medium Dependent
D PMI	Physical Medium Independent
SSD	Start of Stream Delimiter
SFD	Start of Frame Delimiter

The Ohio State University

STP Shielded Twisted Pair UTP Unshielded Twisted Pair

The Ohio State University

Raj Jain

References: Books

- □ J. F. Costa, "Planning and Designing High-Speed Networks using 100VG-AnyLAN," 2nd Edition, Prentice Hall, 1995.
- H. W. Johnson, "Fast Ethernet: Dawn of a New Network," Prentice-Hall, 1995.
- R. Jain, "FDDI Handbook: High-Speed Networking Using Fiber and Other Media," Addison-Wesley, 1994.

References: Standards

- IEEE 802.3u, "IEEE Draft Standard for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications: MAC Parameters, Physical Layer, Medium Attachment Units and Repeater for 100 Mb/s Operation (version 5.0)," 14 June 1995 (Phone: 1-800-678-IEEE)
- ANSI X3T9.5 TP-PMD/312, "FDDI T9isted Pair Physical Layer Medium Dependent (TP-PMD)," Revision 2.1, 1 March 1994 (Phone: 212-642-4900)
- EIA/TIA 568, "Commercial Building Wiring Standard," 1991.
- IEEE 802.12, "IEEE Draft Standard for Demand-Priority Access Method, Physical Layer and Repeater Specifications for 100 Mb/s Operation," December 1994.
 The Ohio State University

References: Papers

- I. Dalgic, W. Chien, and F.A. Tobagi, "Evaluation of 10BASE-T and 100BASE-T Ethernets Carrying Video Audio and Data Traffic," INFOCOM'94 Vol 3 1994, pp. 1094-1102.
- □ B. Clark, "Emerging LAN Structures," Wescon Conference Record 1994. Wescon, Los Angeles, CA, RC-104. pp. 8-15.
- L. Goldberg, "100BASE-T4 Transceiver simplifies Adapter, Repeater, and Switch Designs," Electronic Design, March 20, 1995, pp. 155-160.
- □ L. Goldberg, "100BASE-T4 Chip brings speed to today's LANs," Electronic Design, February 6, 1995, pp. 180-182.

- D. Brusky, "Chip set delivers 100 Mbits/s to the desktop," Electronic Design, January 10, 1994, pp. 45-56.
- Moses, Jack T., "Fast Ethernet update: 100BaseT has arrived", Telecommunications (Americas Edition) v 29 n 3 Mar 1995. 2pp
- Somer, Greg, "Ethernet transceiver offers upgrade from existing networks", Electronic Engineering (London) v 67 n 820 Apr 1995. 4pp

References: On-Line

- □ Fast Ethernet Index, http://alumni.caltech.edu/~dank/fe/
- Campus wide networking FAQ, http://web.syr.edu/~jmwobus/comfaqs/big-lan.faq or http://www.cis.ohiostate.edu/hypertext/faq/usenet/LANs/big-lan-faq/faq.html
- Quick reference guide to 100 Mb/s Fast Ethernet, http://www.ots.utexas.edu/ethernet/descript-100quickref.html
- 100 Mb/s Fast Ethernet, http://www.ots.utexas.edu/ethernet/100mbps.html
- The 1995 Switched 10 Mbps-100 Mbps Evaluation, http://www.snci.com/q2intro.htm

- □ 100VG-AnyLAN FAQ, http://www.io.com/~richardr/vg/
- Guide to Ethernet, ftp://ftp.utexas.edu/pub/netinfo/ethernet/ethernet-guide.ps
- Guide to Ethernet Configuration, ftp://ftp.utexas.edu/pub/netinfo/ethernet/ethernet-config.ps
- High-Speed Networking White Paper, http://www.tci.com/papers/hispee5.html
- Faster Ethernet, http://www.well.com/user/wkmn/feature.html
- □ USENET: comp.dcom.* (many groups with prefix)
- Fast Ethernet Manufacturers, http://www.iol.unh.edu/consortiums/fe/fethvend.html
- 100VG-AnyLAN Manufacturers, http://www.io.com/~richardr/vg/vgvend.htm

- Fast Ethernet Consortium, http://www.iol.unh.edu/consortiums/fe/fast_ethernet_consor tium.html
- 100VG-AnyLAN Consortium, http://www.iol.unh.edu/consortiums/vganylan/vg_consortium.html
- □ KMJ Communications, http://www.kmj.com/fast/fast.html
- LAN Performance Labs LPL, http://www.ftel.com/t100/lpl_home.html
- Cogent Data Technologies Fast Ethernet, http://www.cogentdata.com/white/fastw.html
- Grand Junction Fast Ethernet, http://www.grandjunction.com/prodinfo/artinfo/fast1.html

- 3Com 100Base-T Migration Guide, http://www.3com.com/cgibin/mfs/01/WhatNew/TechDir/MigrationGuide.html
- Asante Technologies 100Base-T, http://www.asante.com/Press/wpfast.html
- Farallon Computing, http://www.farallon.com/www/product/en/fepaper.html
- SMC Fast Ethernet Evaluation and Migration, http://www.smc.com/fe/fewp.html