

- q Terminology
- q Access Methods
- q Spread Spectrum
- q Wireless local area networks
- q Wireless wide area networks

Note: wireless phone services and standards not covered.

- q Mobile vs Stationary
- q Wireless vs Wired
- q Wireless \Rightarrow media sharing issues
- q Mobile \Rightarrow routing, addressing issues

Physical Layer

- q Analog vs Digital
- q Infrared, Microwave, Radio
- q Multiplexing: Frequency, Time, Space, Code division

The Ohio State University

Spectrum Issues

- q For the same power, lower frequencies travel farther than higher frequencies ⇒ Short wave for Voice of America Medium wave for local radio
- q US allocations of spectrum is not the same as in other countries \Rightarrow You can't use the same equipment everywhere
- q There is a shortage of available spectrum.
 - \Rightarrow A source of income for the Government
 - \Rightarrow Spectrum no longer given by lottery but by bids
- q Federal Government uses up 30% of available spectrum
- q Earlier communications used up all lower frequencies
- Frequencies once considered unusable are now being used.
 915 MHz, 2.4 GHz, 5.8 GHz

The Ohio State University

Other Radio Problems

- q Broadcast \Rightarrow Received by all receivers
- q Air \Rightarrow Simple to tap the transmission \Rightarrow More subject to security risk
- q Radio \Rightarrow Easy to jam
- q Portable \Rightarrow Easy to steal, loose, and damage
- q Easily monitored using scanners
- q In 1992, 1.7M scanners vs1.3M Phones sold in US
- q Toronto Study: 80% of cellular traffic monitored
- q 60% of calls are taped [Boston Globe 4/14/94] \Rightarrow NH Lawyers can't use cellular with clients

Frequency Division Multiple Access

- q Frequency band = Channel (as in TV or Public Radio)
- q Adjacent Channels \Rightarrow Interference
- q Dynamic on-demand allocation of channels
- q Number of Channels, Arrival rate of calls, Duration of calls, User population \Rightarrow Blocking probability
- q Downstream and upstream channels use different frequency bands
- q FDMA used in all analog systems (including US cellular phone system)
 The Ohio State University

- q Adjacent slots \Rightarrow Synchronization and Interference
- q TDMA used in IS-54 (GSM)
 Global System for Mobile Communications (GSM) is a digital cellular radio system
- **q** Channel rate = Sum of slot data rate

Space Division Multiple Access Cellular Technology

- q Repetitive 7-pattern
- q Cell size 0.5 mile to 10 miles
- q Terrain topology, weather affects coverage
- q Smaller cells \Rightarrow More reuse
 - \Rightarrow More capacity \Rightarrow Smaller power \Rightarrow lighter hand sets
- q Macro (<35km), Micro (<1km), and Pico (<100m) cells

- q Pseudo-random frequency hopping
- q Spreads the power over a wide spectrum \Rightarrow Spread Spectrum
- q Developed initially for military
- q Patented by actress Hedy Lamarr
- q Narrowband interference can't jam

CDMA

- q Advantages:
 - q Little Intereference
 - Noise can be 18 dB higher than signal
 - q No channel assignment
 - \Rightarrow Frequency reuse in every cell
 - \Rightarrow 20 times more users than FDMA
 - q Enhanced security
- q Disadvantages:
 - q Code synchronization and tracking
 - Tight power control to ensure equal power reception at the base from all mobile
- q IS-95 US Digital Cellular standard is based on CDMA

Wireless LANs Market Growth

\$300M in 1992 to over \$1.5B in 1997

- q Portable computing
- q Standard interfaces: ISA, PCMCIA
- q RF technology: Spread Spectrum Multiplexing
- q FCC spectrum allocation for unlicensed use
 - q 902-928, 2400-2483, 5725-5850 MHz

Wireless LANs Examples

System	Medium	Rate	Protocol	Remark
Altair Plus	18 Ghz	10 Mbps	Ethernet	50 Users/base
II	Microwave			
RangeLAN	Spread	242 kbps	Proprietary	Peer-to-peer
	spectrum			or server-
				based
InfraLAN	Infrared	4/16	Token ring	6 Users per
		Mbps		base, 80'
WaveLAN	Spread	2 Mbps	Proprietary	Peer-to-peer
	Spectrum			

The Ohio State University

Wireless LAN (Mobile) Products

Product	Data Rate	Freq-	Techno-	Range	Access
		uency	logy		Points
ATT GIS	2 Mbps	900 MHz	DSSS	50 m	Optional
IBM	1 Mbps	2/4 GHz	FHSS	50 m	Required
Proxim	1.6 Mbps	2.4 GHz	FHSS	50 m	Optional
Xircom	1 Mbps	2/4 GHz	FHSS	50 m	Optional
Photonics	1 Mbps	IR	PPM	10 m	Optional
Spectrix	4 Mbps	IR	OCK	10 m	Required

Wireless LANs (fixed)

Product	Datarate	Freq-	Techno-	Range	Access
		uency	logy		Point
Motorola	10 Mbps	18 GHz	Narrowba	15 m	Required
Altair			nd		
Windata	10 Mbps	2.4, 5.7	DSSS	25 m	Required
		GHz			
InfraLAN	4, 10, 16	IR	OCK	25 m	Required
	Mbps				

- q 4.8 kbps to 19.2 kbps nominal
- q Throughput 2 to 8 kbps
- q Wired backbone using leased lines
- q Packetized short transmission
- q Email, stock quotes, weather
- q Options: ARDIS, RAM Mobile Data, Cellular,Cellular Digital Packet Data (CDPD), NWN, and Metricom

The Ohio State University

ARDIS

- q Initially designed for IBM's field service use only.
- **q** Now offered as a service by Motorola and IBM
- q Available nationwide since April 1990. Covers 8000 cities
- q In mid-1993: 1300 base stations connected to 35 radio node controllers connected to 3 message switches
- q Designed for field workers, e.g., UPS uses ARDIS + Cellular
- q Network Control Processors maintain location information in its area
- q 800 MHz. Single licensed channel. Being extended.
- q 4800 bps duplex connections with error correction. 19.2 kbps available at some places.
- q Good in-building access. 2 W power. 6 hours/charge.

The Ohio State University

RAM Mobile Data

- q Uses Mobitex technology developed by Ericson
- Adaptation of a specialized mobile ratio (SMR) system with 10 to 30 channels per area
- q Operational in Europe. Started December 92 in North America
- q By 1993: 800 base stations covering 100 metropolitan areas or 90% of US population
- q Subscriber access via radio to base station
- q 512 byte packets, per-hop ack
- **q** Mobile monitors the reception and reregisters
- q 8 kbps interface over 12.5 kHz channels
- q Supports store and forward
- q In-building penetration and roaming

The Ohio State University

Data over Cellular

- q US Cellular system is an analog system known as Advanced Mobile Phone System (AMPS) designed for analog voice and not data
- q FDMA, 824-849 MHz Upstream, 869-894 MHz Downstream.
- q Each channel is 30 kHz wide
 ⇒ Two sets of 333 duplex channels
 One set for wireline and one for non-wireline carrier
- q Need data-compatible cellular phone,
 and cellular compatible modem
- q Handover times of 300 ms or longer
 ⇒ Connections can be broken if you change the location or if another user initiates a call

The Ohio State University

Cellular Digital Packet Data (CDPD)

- **q** Originally named "Celluplan" by IBM
- q Allows data to use idle channels on cellular system
- q Data hops from one channel to next as the channels become busy or idle

CDPD

- q Backed by 9 major service providers
- q Nationwide cellular packet data service
- q Connectionless and connection-oriented service
 Connectionless ⇒ No ack, no guarantees
 Connection-oriented ⇒ reliable delivery, sequencing, flow control
- q Point-to-point and multipoint connections
- q Uses only idle 30 kHz channels in the cellular system
- q Quickly hops-off a channel grabbed by cellular system
 - q Currently, extra channels dedicated for CDPD
- q Subscriber unit (SU) registers on power-up and periodically
- q Deregisters before power-down
- **q** Subscriber unit initiates handoff The Ohio State University

Metricom

- q Spread-Spectrum in the 902-928 MHz band
- q In-building, campus, and metropolitan area networking
- q Nearby units can communicate directly.
- q If the intended destination is not directly reachable, go via a "node" through the network. Up to 56 kbps.
- q Nodes are cheap (less than \$1000)
- q You can have a campus network of your own with a connection to the Metricom's metropolitan area network
- q Flat monthly rate based on speed only

Ref: http://www.metricom.com/ricohom.html

Nationwide Wireless Network (NWN)

- q Being designed by Mtel (owners of SkyTel)
- q Two-way messaging
- q Can acknowledge your page directly using the pager
- q Main issue: Pager's transmit power is limited and much smaller compared to the power of the base
- Quite of the other ot
- q Inbound 12.5 kHz: Each base transmitter's area covered by multiple (inexpensive) receivers
- q Awarded a "Pioneer's Preference License" for a 900 MHz frequency

The Ohio State University

- q Multiplexing: TDMA, FDMA, SDMA, CDMA
- q CDMA = Spread spectrum: Frequency hopping or direct sequence
- q LAN Alternatives: Photonics, RangeLan, ALTAIR
- q WAN Alternatives: ARDIS, RAM, Cellular, CDPD, Metricom, NWN

The Ohio State University

References: Books

- A.M. Seybold, "Using Wireless Communications in Business," Van Nostrand Reinhold, 1994, 216 pp.
- q P.T. Davis and C.R. McGuffin, "Wireless Local Area Networks," McGraw-Hill, 1994, 250 pp.
- q P. Wong and D. Britland, "Mobile Data Communications Systems," Artech House, 1995, 190 pp.
- q I. Brodsky, "Wireless: The Revolution in Personal Telecommunications," Artech House, 1995, 276 pp.
- q J. Gardiner and B. West, Ed., "Personal Communication Systems and Technologies," Artech House, 1995, 238 pp.
- q R. Sneiderman, "Wireless Personal Communications: The Future of talk," IEEE Press, 1994, 195 pp.

The Ohio State University

- q S.M. Redl, M.K. Weber, and M.W. Oliphant, "An Introduction to GSM," Artech House, 1995, 379 pp.
- q R.C. Dixon, "Spread-Spectrum Systems with Commercial Applications," Wiley, 1994, 573 pp.
- g B. Bates, "Wireless Networked Communications," McGraw-Hill, 1994, 295 pp.
- q J. Walker, (Ed), "Mobile Information Systems, Artech House, Boston," 1990
- q R.C.V. Macario (Ed), "Personal & Mobile Radio Systems," IEE, UK 1991
- J.D. Parsons and J.G. Gardiner, "Mobile Communications Systems," Halsted Press, New York, 1989
- q G. Calhoun, "Digital Cellular Radio," Artech House, 1988, 445 pp.

The Ohio State University

References: On-line

- q The WWW Virtual Library: Mobile and Wireless Computing, http://snapple.cs.washington.edu:600/mobile/mobile_www.html
- q Mobile computing, http://www.yahoo.com/Computers/Mobile_Computing/
- q Wireless companies, http://www.yahoo.com/Business/Corporations/Telecommunicati ons/Wireless/
- q Wireless news group: comp.std.wireless
- q RAM Mobile Data, http://www.ram.co.uk/

References

- q G.H. Forman and J. Zahorjan, "The Challanges of Mobile Computing," Computer, April 1994
- q D.F. Bantz, "Wireless LAN Design Alternatives," IEEE Network, March/April 1994, pp. 43-53.
- q K. Pahlavan, T.H. Probert, and M.E. Chase, "Trends in Local Wireless Networks," IEEE Communications Magazine, March 1995, pp. 88-95.
- q E. Links. W. Diepstraten and V. Hayes, "Universal Wireless LANs," Byte, May 1994, pp. 99-108.
- q B. Jabbari, et al, "Network Issues for Wireless Communications," IEEE Communications Magazine, January 1995, pp. 88-98.

The Ohio State University

References (Cont.)

- R.H. Katz, "Adaptation and Mobility in Wireless Information Systems," IEEE Personal Communications, First Quarter 1994, pp. 6-17.
- q K.C. Chen, "Medium Access Control of Wireless LANs for Mobile Computing," IEEE Network, September/October 1994, pp. 50-63.
- q C.A. Rypinski, "Standards Issues for Wireless Access,"
 Business Communications Review, August 1992, pp. 40-45.
- q G. Fay, "Wireless Data Networking," International Journal of Network Management, 8 March 1992, pp. 8-17.

References (Cont.)

- q D.J. Goodman, "Second Generation Wireless Information Networks," IEEE Transactions on Vehicular Technology, Vol. 40, No. 2, May 1991
- Q D. Buchholz, et al, "Wireless In-Building Network Architecture and Protocols," IEEE Network Magazine, November 1991, pp. 31-38.
- v. Hayes, "Standardization Efforts for Wireless LANs," IEEE Network Magazine, November 1991, pp. 19-20.
- q D.J. Goodman, "Cellular Packet Communication," IEEE Transactions on Communications, August 1990, pp. 1272-1280.

Wireless LAN/WAN Products

- q Adaptec: Airport NIC
- q Aironet Wireless Communications: ArLAN 630, 631, 640 Hubs
- q Alps America: RadioPort Plus, RadioPort/parallel NICs

q AT&T:

- q Safari Wireless Mailbox
- q TransTalk 9000 Wireless Communications System (Switch)
- q WaveLAN/WavePoint NIC
- q Wireless Medium Access Controller NIC
- q Wireless Services Flashpoint (Hand-Held Data Device)
- q Wireless Subscriber System (Telecom Equipment)

- q Cabletron Systems: Freelink/62 Wireless Ethernet Hub
- q Cincinnati Microwave: MC-Dart 100, PC-Dart 200 Modems
- q Cylink: Airlink Bridge Hub
- q Data Race: Wireless Redidockit NIC
- q Dauphin Technology: DTR-1/GPS/LAN/WAN NICs
- q Dayna Communications:
 - q Daynacomm Roamer PCMCIA/Serial NIC
 - q Network Access Point NIC
- **q** DEC:
 - q RoamAbout Access Point ISA/PCMCIA NICs
 - q WaveLAN NIC

- q Diablo Research: Mxlink/Mylink modems
- q Digital Ocean: Grouper 100D/100Lt/100Mp/110Mp/NB/Manta/Starfish NICs
- q Ericsson: M2190 (Wireless Modem)
- q Extended Systems: JetEye NICs
- q Fluke: Wireless Logger (Data Collection Device)
- q Goldmine: Wireless Solution (Remote Access Software)

- q IBM:
 - q AS/400 Wireless LAN
 - q Infrared NICs
 - q Thinkpad Wireless fax modem
 - q Wireless LAN Entry
 - q Wireless modems for ARDIS/Cellular/CDPD/Mobitex
 - q Wireless RF LANs
- q Intel: Wireless modem
- q K&M Electronics: Airplex wireless fax modem jack
- q Kantek Spectrum: 3-D Wireless Ringmouse (Mouse)
- q Travelling Software: LapLink Wireless (file transfer S/W)

The Ohio State University

- **q** Laser Communications:
 - q InfraLAN NIC
 - q Omnibeam 4000 Network
 - q LXE 5420/5460 wireless modems
 - q LXE RF ID NIC
- q Merritt Computer Products: Cordless printer sharing kit
- q Metricom: Ricochet wireless modem
- q Momentum Microsystems: PC-Linx NIC

- **q** Motorola:
 - q ALTAIR Plus wireless Ethernet NIC
 - q ALTAIR wireless Ethernet NIC
 - q Cellect 14.4 PCMCIA (wireless fax modem)
 - q Envoy Wireless Communicator (PDA)
 - q Infotac Two-Way Messenger (wireless modem)
 - q Wireless In-Building Network
- q NEC: Wireless PBX
- q Northgate Computer Systems: Wireless LAN
- q Notable Technologies: Airnote wireless modem
- q O'Neill Communications: Local Area Wireless Network

The Ohio State University

- q Olivetti: Wireless LAN
- q Persoft: Intersect Remote Bridge
- q Photonics Collaborative: Wireless LAN/WAN System
- **q** Proxim:
 - q Proxlink NIC
 - q RangeLan/RangeLAN2 ISA/PCMCIA LANs
 - q RangeLink bridge/router
- q Radlinq: WL-4000/5000/6000 wireless routers
- q RDC Communications: PortLAN modem
- q Sierra Wireless: PocketPlus (wireless fax modem)
- q Silcom Manufacturing Technology: FreeSpace NIC

The Ohio State University

- q SkyTel: Skycard NIC
- q Socket Communications: Pagecard wireless messaging system
- q Solectek: Airlan Parallel/PCMCIA LAN/CAN NIC/bridge
- q Spectrix: SpectrixLite NIC
- q Spreadnet: Wireless Link (WAN Adapter)
- q Telesystems: SLQ ArLAN 680 NIC
- q Toshiba: Wireless Portable Workgroup (Pre-Packaged LAN)
- q Triquint Semiconductor: TQ9205/TQ9206 NIC
- q U.S. Robotics: Worldport dual standard PCMCIA (wireless modem)

The Ohio State University

- q U.S. Wireless: Data POS-50 (point-of-sale terminal)
- q USEMCO Technologies: Mobile Trader (wireless modem)
- **q** Windata:
 - q Airport I/II (wireless LAN systems)
 - Airport Wireless Interbuilding Systems (pre-packaged LAN)
 - q Freeport wireless hub/LAN/transceivers
- q Xircom: NetWave NICs
- q Zenith Data Systems: CruiseLan ISA/PCMCIA NICs/bridges/routers
- q Zyxel USA: U-1496P portable cellular fax Modem