Multimedia: An Introduction

Local Multimedia

□ Video Fundamentals

Compression methods

□ Compression Standards: JPEG, MPEG,...

Multimedia: Key Ingredients

- Two or more media: Text, Image, Audio, Video
- □ Synchronization among the media
- □ Human users: senders, receivers or both
- □ Interaction: Search, fast forward, conversation

Multimedia Applications

- Distance learning
- Healthcare: Telemedicine, Remote Diagnosis
 Remote access to health database
- □ Telepresence: Virtual proximity. Can control remote camera.
 - □ Real estate purchasers can drive down the virtual city
- Video Cruising: Virtually go through coworker's offices, coffee rooms
- □ Collaboration: Shared-screen systems

In 525 lpf countries:

- Video Conferencing
 - \Rightarrow Common Intermediate Format (CIF) = 352×240
- $\Box \quad Source Input Format (SIF) by MPEG = CIF by CCITT$
- □ Video Phone \Rightarrow Quarter CIF = 176 ppl × 120 lpf
- □ Broadcast, Cable, VCR \Rightarrow CCIR 601 = 704×480
- $\Box HDTV = 1280 \times 720 (Progressive=NI) \text{ or } 1440 \times 960 (Interlace)$
- \Box 24 bits/pixel \Rightarrow 704×480×30×24 = 242 Mbps, 109 GB/h

The Ohio State University

Raj Jain

Video Compression Considerations

- □ High compression
 - □ 100-200 normal, 2500 possible with fractal methods
- $\Box Decoding must be simple \Rightarrow A symmetric$
 - □ H.261, JPEG, AVI, QuickTime are Symmetric
 - DVI, MPEG are asymmetric
- □ Allow real time encoding/decoding
- □ Implementable in software, if possible
- □ Allow random-access, fast forward/reverse
- **Transmission Error-tolerant**
- □ Integratable with text, graphic files for storage/mailing
- □ Scalable: Allow a range of video quality

The Ohio State University

	Symmetric	Asymmetric
Hardware	JPEG	DVI/Intel
based	H.261	MPEG
		CD-I
oftware	AVI	
based	QuickTime	
	Ultimedia	

Video Compression Techniques

- Reducing the frame rate, lines/frame, pixels/line, bits/pixel
 Used for teleconferencing. Not acceptable for entertainment
- □ Redundancies: Spatial, Spectral, Temporal
- □ No loss entropy coding:
 - **u** Run-length coding: $000011111111.100000=0^{4}1^{35}0^{5}$
 - □ Huffman coding: Frequent characters with fewer bits
- Discrete Cosine Transform
 - Only low frequency components are quantized
- Differential Pulse Code Modulation (DPCM)
 - □ Sections with large interframe differences are quantized
- □ Motion Compensation (Inter-frame)

Differences from predicted motion are quantized

The Ohio State University

Pulse Code Modulation (PCM)

 Nyquist Sampling Theorem: Sample analog signal at twice the signal frequency

- \Box Quantization Step = Unit of quantization
- **Quantization error**
 - = Error due truncation or rounding

Acceptable value depends upon noise and human perception The Ohio State University Raj Jain

Discrete Cosine Transform

- Time domain to frequency domain transform in two dimensions
- □ With infinite precision DCT is lossless
- DC coefficient coded differentially from previous block
- □ Other coefficients entropy encoded using zig-zag sequence
- \Box Quantization table specifies step size for each element \Rightarrow Loss

Discrete Cosine Transform

- $\Box Take 8 \times 8 block:$
- □ Compute 64 coefficients

```
□ For u=0,1,...,7 and v=0,1,...,7

F(u,v)=0.25 C(u) C(v) \{ \Sigma_{x=0}^7 \Sigma_{y=0}^7 f(x,y) \cos[(2x+1)u \pi/16] ]

\cos[(2y+1)v \pi/16]\}
```

 $\begin{array}{l} f(u,v) = 0.25 \; \left\{ \Sigma^7_{x=0} \Sigma^7_{y=0} C(u) \; C(v) \; F(x,y) \cos[(2x+1)u \; \pi/16] \right. \\ \left. \cos[(2y+1)v \; \pi/16] \right\} \end{array}$

Where, C(i)=1/sqrt(2) for i=0 =1 otherwise

 \Box F(0,0) is the DC, others are AC

 \neg F(u,v) is small for high values of u,v

JPEG for Color

- \Box Color Images = Multiple components
- □ The components may be interleaved
- □ Each component is divided into regions
- □ Each region consists of several 8X8 blocks
- All blocks of one region of one component followed by one region of second component and so on
- CODECs have up to 4 quantization tables and 4 entropy tables active

JPEG for Video

- □ Many vendors use JPEG for video
- □ Although designed only for images
- □ No interframe coding \Rightarrow Fast random access
- □ 221.184 Mbps for 640X480X30X24
- \Box 1:50 compression \Rightarrow 4.4 Mbps
- $\Box \quad Quarter window \Rightarrow 1 \text{ Mbps}$

- □ Inter-frame Coding
- $\Box I = Intraframe coded \Rightarrow Allows random access$
- $\Box P = Predicted from previous P or I$
- \Box B = Bidrectional prediction
- □ Bandwidth Allocation: I:P:B::5:3:1
- □ Uses Motion prediction, DCT coding, quantization, entropy

MPEG-1 (Continued)

- ISO/IEC JTC1/SC29/WG11 CD 11172
 Motion Picture Experts Group
- □ VCR quality video for digital storage 1.5-2 Mbps
- □ Asymmetric: coding more complex than decoding
- □ Compression ratios of $200 \Rightarrow$ VCR quality at 1.5-2 Mbps
- □ Ratio of $50 \Rightarrow$ Broadcast quality at 6 Mbps
- □ Specifies rules for multiplexing audio/video streams
- □ 32 kbps to 384 kbps mono/stereo audio
- □ Synchronization using 33 bit timestamps 90 kHz clock

MPEG-2

- □ MPEG Phase 2: Broadcast quality or better
- □ 15 Mbps for NTSC, 60 Mbps for HDTV, 4-15 Mbps for VCR
- □ Compability: Backward/forward, Different picture formats
- □ Specifies 3 profiles: Simple, Main, Next Simple does not use bidirectional frames (No storage ⇒ Low cost, Low delay)
 Main profile designed for most common applications Next profile supports hierarchical coding
- □ Each profile in 4 levels

□ High Level Type 1: HDTV, 1152 lines/frame,
 1920 pixels/line, 60 fps ⇒ 62.7 Mpps = 60 Mbps

□ High Level Type 2: HDTV, 1152 lpf, 1440 ppl, 60 fps

 \Rightarrow 47 Mpps = 60 Mbps

The Ohio State University

Raj Jain

MPEG-2 (Continued)

- □ Main Level: Full size (576 lpf, 720 ppl), 30 fps \Rightarrow 10.4 Mpps = 15 Mbps
- □ Low Level: 1/4 Size (288 lpf, 352 ppl), 30 fps $\Rightarrow 2.5$ Mpps = 4 Mbps
- □ Video industry will use Main profile/main level
- □ Cable industry may use Simple profile/main level
- □ US HDTV will use Main profile/High level
- □ European HDTV will use Next profile/High level
- MPEG-2 allows field or frame coding, MPEG-1 allows only frame coding
- MPEG-2 allows 3 chrominance formats: 4:4:4, 4:2:2, 4:2:0
 MPEG-1 allows only 4:2:0

ITU-T H.261 Standard

- □ Started in 1984 for m×384 kbps
- □ Later p×64 kbps p = 1, 2, ..., 30
- □ VCR quality video
- □ Resynchronization at receiver ⇒ Allows transmission over independent parallel channels
- $\square DCT + Quantization + Motion-predicted compression$
- □ Color represented by Y, Cb, Cr
- □ Y = Luminance, Cb = Chrominance = B-Y, Cr = Chrominance = R-Y
- □ Sampling rates 4:2:2

ITU-T H.261 Standard

Common Intermediate Format (CIF) for Video conferencing
 Quarter CIF (QCIF) for desktop telephony

QCIF

 \mathbf{TF}

Luminance (y) 144 lpf, 180 ppl 288 lpf, 360 ppl

Chrominance (Cr,Cb) 72 lpf, 90 ppl 144 lpf, 180 ppl

Uncompressed rate 9.115 Mbps 29.97 Mbps

 \Box Allows dropping frames \Rightarrow reducing frame rate

□ At 10 fps, QCIF requires compression ratio of 50 for 64 kbps

$$\Box p = 1 \text{ or } 2 \Longrightarrow \text{Face only (Video Phone)}$$

 \Box p = 6 for teleconferencing

- □ Hierarchical coding
- Image signal is split into frequency bands
 Each band is processed differently
 Example: 4 bands LL, LH, HL, HH
- □ LL consists of low-frequency band in the horizontal scan and low-frequency in the vertical scan
- LL contains most useful information, coded using DCT
- □ Other bands coded using simple quantizers with a dead zone

Dead zone results in long strings of zeros

Raj Jain

- □ Video formats: Lines, pixels
- Compression techniques: Huffman, run-length, DCT, Motion prediction
- □ Compression Standards: JPEG, MPEG, H.261
- □ Hierarchical coding

References: Books

- D. Minoli and R. Keinath, "Distributed Multimedia Through Broadband Communications Services," Artech House, 1993, 312 pp.
- B. Lee, M. Kang, and J. Lee, "Broadband Telecommunications Technology," Artech House, Boston, 1993
- □ N. Ohta, "Packet Video," Artech House, Boston, 1994
- T. Trowt-Bayard, "Video Conferencing: The Whole Picture," Flatiron Publishing, Inc., New York, 1994
- □ J. Keyes, Ed., "The McGraw-Hill Multimedia Handbook," McGraw-Hill, New York, 1994, Chapter 32.
- J. Ozer, "Video Compression for Multimedia," Academic Press, Cambridge, MA, 1995.

The Ohio State University

References: Papers

- IEEE Spectrum, Special issue on Digital Television, April 1995. [History and explanation of HDTV]
- □ Communications of ACM, Vol. 34, No. 4, Apr 1991.
- B. Furht, "Multimedia Systems: An Overview," IEEE Multimedia, Spring 1994, pp. 47-59. [JPEG, MPEG, pX64, Networking]
- T. Chiang and D. Anastassiou, "Hierarchical Coding of Digital Television," IEEE Communications Magazine, May 1994, pp. 38-45. [MPEG-2]
- E. Fox, "Advances in Interactive Digital Multimedia Systems," IEEE Computer, October 1991, pp. 9-21.

References: Standards

- □ [JPEG] JTC1/SC2/WG10, "Digital Compression and Coding of Continuous-Tone Still Images"
- [MPEG-1] JTC1/SC2/WG11, "Coding of Moving Pictures and Associated Audio for Digital Storage Media up to about 1.5 Mbit/s," ISO/IEC DIS 11172, 1992.
- [MPEG-2] "Information Technology-Generic Coding of Moving Pictures and Associated Audio Recommendations H.262," ISO/IEC 13818-2 CD, Nov 1993, Seol.
- □ [H.261] CCITT SG XV, "Video coder/decoder for audiovisual services at p × 64 kbps"

References: Online

- JPEG image compression: Frequently asked questions, http://www.cis.ohio-state.edu/hypertext/faq/usenet/jpegfaq/faq.html
- Compression: Frequently asked questions, ftp rtfm.mit.edu, files:/pub/usenet/news.answers/compression-faq/part[1-3]
- Distributed Multimedia Survey: Standards, http://cuiwww.unige.ch/OSG/MultimediaInfo/mmsurvey/st andards.html#G.711
- MPEG: Frequently asked questions, http://www.crs4.it/HTML/LUIGI/MPEG/mpegfaq.html

Acronyms

- □ CD-I Compact Disc Interactive
- **D** DCT Discrete Cosine Transform
- DVI Digital Video Interactive
- □ HDTV High Definition Television
- □ IVD Integrated Voice Data
- JBIGJoint Bilevel Image Experts Group
- JPEG Joint Photographic Experts Group
- □ MHEG Multimedia and Hypermedia Experts Group
- MIDI Musical Instrument Digital Interface
- MPEG Motion Picture Experts Group
- □ NTSC National Television Standards Committee
- DPALPhase Alternating Line
- Image: SECAMSequential Color And Memory
- **GINE Society for Motion Picture and Television Engineers**

The Ohio State University