

- □ ATM Networks Overview
- □ Connectionless Traffic: IP Over ATM
- □ Requirements for Success
- □ Tariff, Scalability, Applications, Simplicity

Service Categories

- □ CBR: Constant Bit Rate (Zero delay variation)
- □ VBR: Variable Bit Rate
 - □ VBR-RT: VBR real time (Low delay variation)
 - □ VBR-NRT: VBR non-real time
- ABR: Available Bit Rate
 (Source commits to control, Best effort to not loose cells)
- □ UBR: Unspecified Bit Rate (No commitment, No guarantee)

Current Service Categories

Attribute	CBR	VBR_RT	VBR_NRT	ΔRR	UBR
			V DIC-IVINI		
CLR for CLP=0		Specified	Specified	Unspecified	
CLR for CLP=1		Optional		Specified	Unspecified
CTD	Spe	cified	Specified* Unspecified		Unspecified
CDV	Spe	cified	Unspecified	Unspecified	Unspecified
PCR		Specified	Specified	N/A	
MCR		N/A		Specified	N/A
Controllable?		No	Yes	No	
Application	Circuit	Interactive	Multimedia	Data	Monitoring
	Switching	Multimedia	Email		

CLP = Cell loss priority; 1 Cell can be dropped under overload CLR = Cell Loss Ratio

CTD = Cell transfer Delay = End-to-end delay

CDV = Cell Delay variation = Max-Min End-to-end delay

PCR = Peak Cell Rate

MCR = Minimum Cell Rate

The Ohio State University

Raj Jain

LAN Emulation

Application		Application			ation	Application			
	ТСР		UDP		TP4				
	IJ	Р) (CLNS		IPX		
Ethernet S/W			Token Ring S/W						
ATM LAN Emulation									
Twisted Pair C		loa	X	Fibe		r	STP		

The Ohio State University

Raj Jain

Networking Failures vs Successes

- □ 1980: Broadband (vs baseband)
- □ 1981: PBX (vs Ethernet)
- □ 1984: ISDN (vs Modems)
- □ 1986: MAP/TOP (vs Ethernet)
- □ 1988: OSI (vs TCP/IP)
- □ 1991: DQDB
- □ 1992: XTP (vs TCP)

Requirements for Success

- □ Low Cost
- □ High Performance
- □ Killer Applications
- **□** Timely completion
- □ Manageability
- □ Interoperability
- □ Coexistence with legacy LANs

Existing infrastructure is more important than new technology

Challenge: Tariff

- High-speed is important for LANs
 Low-cost is critical for WANs.
- Phone company's goal: How to keep the voice business and get into data too?
- □ Customer's goal: How to transmit the data cheaper?
- □ Tariff Today:
 - \Box 64 kbps voice line = \$300/year
 - □ 45 Mbps line (coast to coast) = 180 k-240 k/year⇒ 155 Mbps line = 540 k - 720 k/year
- □ Tomorrow: 155 Mbps = 1k/month + 28/G cells ⇒ 13k - 45k/year

Challenge: Simplicity

- $\Box \text{ No equal competition} \Rightarrow \text{Complexity}$
- \Box Ethernet vs Token ring war \Rightarrow improvements
- One size fits all \Rightarrow Complexity
 Too many options too soon. Should work for
 CBR and ABR LAN and WAN
 - □ Private and Public Low speed and High speed
- Switches have to do connection setup, route determination, address translation, anycasting, multicasting, flow control, congestion control, ...
- □ Too few header bits. Bits used for dual purposes
 ⇒ Implementation complexity
- □ Many independent forums (ITU vs ATM Forum) ⇒ People energy divided

Summary

- Available bit rate (ABR) service is important for data.
- □ IP over ATM is designed to KISS.
- Voice brings a lot of bucks for a little bandwidth. Data requires a lot of bandwidth for little bucks. Old companies will find it difficult to survive the tarriff wars.
 -) Solving all problems can lead to complexity and failure.

References

- □ R, Handel, M. Huber, and S. Schroder, *ATM Networks*, Addison-Wesley, 1994.
- D.E. McDysan and D.L. Spohn, ATM: Theory and Applications, McGraw-Hill, 1994
- □ L.G. Cuthbert and J-C Sapanel, *ATM: The broadband Telecommunication Solution* IEE 1993, London, 161 pp.
- David Benham, ATM in Local Area Networks, 11 April 1994, Hughes LAN Systems, (800)395-LANs, (415)966-7300.
- Communications of ACM, Special issue on ATM, February 1995
- Presentation ATM Basics, ATM Forum, Fax on demand (415)-688-4318, Document #5007, 8 pp.
- □ Computer based training (CBT) diskettes, ATM Forum

The Ohio State University

Raj Jain

References

- □ RFC 1577, "*Classical IP and ARP over ATM*" by M. Laubach, January 1994.
- RFC 1483, "Multiprotocol Encapsulation over ATM Adaptation Layer 5" by J. Heinanen, July 1993.
- □ User-Network Interface Specifications, V3.0, Prentice-Hall, September 10, 1993., (515)-284-6751
- □ From ATM Forum, (415)-578-6860
 - **D** B-ICI V1.1
 - DXI V1
 - **DS1** Phy V1.0
 - □ 52 Mb/s Category 3 UTP
 - □ 155 Mb/s Category 5 UTP

Information Sources

- ATM Forum (415)578-6860 info@atmforum.com
 http://www.atmforum.com
- □ Internet Engineering Task Force
 - □ IP over ATM: atm-request@hpl.hp.com
 - Routing over Large Clouds: rolcrequest@nsco.netcom.com
 - atommib-request@thumper.bellcore.com
 - □ RFCs: mail-server@nisc.sri.com (Send Help in message)
 - Draft RFC's: Internet-Drafts@cnri.reston.va.us
- □ Internet News: cell-relay-request@indiana.edu
 - □ comp.dcom.cell-relay@indiana.edu
- □ International Telecommunications Union (ITU)

Recent Advances in Networking and Telecommunications Seminar Series 1995

- Last Tuesday of the month (mostly), 3:45-5:15 PM at Ives 100
- □ January 31: High Speed Networks: Trends and Issues
- □ February <u>21</u>: ATM Networks: Introduction
- □ March 28: ATM Networks: Advanced Issues
- □ April 25: Multimedia Networks
- □ May 30: Multimedia Networks
- □ June 27: Wireless Networks
- □ July 25: Wireless Networks
- □ September <u>19</u>: Congestion Control
- □ October 31: Signaling
- □ November 28: All-Optical Networks